Skip to main content

Mathematical Modeling and Numerical Simulation of a Double Touch-Mode Pressure Sensor with Graphene as the Sensing Element

  • Conference paper
  • First Online:
4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019 (ICIoTCT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1122))

  • 728 Accesses

Abstract

Touch mode capacitive pressure sensors have been a vital utilisation of Micro Electro Mechanical Systems (MEMS) offering better exhibitions on account of their efficiency, precision and utility. Graphene has been viewed as a promising material for MEMS because of its high elasticity, high tensile strength and tuneable elastic modulus. Graphene MEMS outperforms Silicon as Graphene can increase the sensitivity of the MEMS up to a great extent. This paper reports a Graphene and Aluminium nitride (AlN) based Double Touch Mode Capacitive Pressure Sensor (DTMCPS). A set of mathematical calculations has been presented for the sensor under study, so as to achieve high sensitivity. We used MATLAB in our paper to interpret theoretical evaluations in the form of graphical plots. This research aims at enhancing the performance of MEMS based DTMCPS so that they can be used for numerous industrial applications operating in a harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jindal, S.K., Varma, M.A., Thukral, D.: Comprehensive assessment of MEMS double touch mode capacitive pressure sensor on utilisation of SiC film as primary sensing element: mathematical modelling and numerical simulation. Microelectron. J. 73, 30–36 (2018)

    Article  Google Scholar 

  2. Dai, C.-L., Lu, P.-W., Chang, C., Liu, C.-Y.: Sensors 9, 10158–10170 (2009)

    Article  Google Scholar 

  3. van Spengen, W.M.: Microelectron. Reliab. 43, 1049–1060 (2003)

    Article  Google Scholar 

  4. Jindal, S.K., Raghuwanshi, S.K.: Capacitance and sensitivity calculation of double touch mode capacitive pressure sensor: theoretical modeling and simulation. Microsyst. Technol. 23(1), 135–142 (2016)

    Article  Google Scholar 

  5. Berger, C., Phillips, R., Pasternak, I., Sobieski, J., Strupinski, W., Vijayaraghavan, A.: Touch-mode capacitive pressure sensor with Graphene-polymer heterostructure membrane. 2D Mater. 5, 015025 (2018)

    Article  Google Scholar 

  6. Zhang, Y., Gui, Y., Meng, F., Gao, C., Hao, Y.: Design of a Graphene capacitive pressure sensor for ultra-low-pressure detection. In: 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016)

    Google Scholar 

  7. Eswaran, P., Malarvizhi, S.: MEMS capacitive pressure sensors: a review on recent development and prospective. Int. J. Eng. Technol. 5, 2734–2746 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Jindal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathy, S., Dash, S., Jindal, S.K. (2020). Mathematical Modeling and Numerical Simulation of a Double Touch-Mode Pressure Sensor with Graphene as the Sensing Element. In: Nain, N., Vipparthi, S. (eds) 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019. ICIoTCT 2019. Advances in Intelligent Systems and Computing, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-39875-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39875-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39874-3

  • Online ISBN: 978-3-030-39875-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics