Skip to main content

Generalized Dynamic Multilayer Fog Computing Architecture

  • Conference paper
  • First Online:
  • 691 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1122))

Abstract

The concept of Smart city and Smart Home is a promising and challenging one which defines the future of urban infrastructure development by integrating the Internet of Things (IoT) with Cloud Computing. Fog Computing with its latest framework on multilayering where each layer focuses on the different aspect of the architecture has proven useful in its goal to reduce space, time and computation overhead from cloud perspectives, due to its traffic offloading and edge device proximity for computation. But, a need for platform generalization and dynamic behavior still exists as most of the smart home needs to operate in multiple environments whereas the existing system mainly works on a rigid model with single infrastructure support. In this paper, a modified version of multilayer fog architecture has been proposed with scope for generalization and dynamic operation in terms of data management and placement. The proposed system consists of five sections - the Lower Fog Layer for end device collection operation and prioritization, Dockerized Middle Layer for node-specific operations like event detection and filtered data propagation, ICFN (Interconnecting Fog Node) Layer for interconnecting fog nodes, Cloud Server for data analytics and Fog Maintenance Remote Server for platform customization. The additional platform customization and multiple service support in the proposed architecture have also made significant improvements with regards to data distribution, request bandwidth, and request failure rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., Liu, Y.: A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 3–12 (2018)

    Article  Google Scholar 

  2. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  3. Singh, S.P., Nayyar, A., Kumar, R., Sharma, A.: Fog computing: from architecture to edge computing and big data processing. J. Supercomput. 75, 2070–2105 (2018)

    Article  Google Scholar 

  4. Raafat, H.M., Hossain, M.S., Essa, E., Elmougy, S., Tolba, A.S., Muhammad, G., Ghoneim, A.: Fog intelligence for real-time iot sensor data analytics. IEEE Access 5, 24062–24069 (2017)

    Article  Google Scholar 

  5. Cisco: White paper: Fog computing and the internet of things: extend the cloud to where the things are. Technical report, Cisco Systems Inc., San Jose, CA (4 2015)

    Google Scholar 

  6. Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., Yang, Q.: Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Inf. 13(5), 2140–2150 (2017)

    Article  Google Scholar 

  7. Bachman, K.: Design and Implementation of a Fog Computing Framework. Master’s thesis, Technical University of Vienna, A-1040 Wien Karlsplatz 13, thesis in Software Engineering and Internet Computing, Technical University of Vienna, Reg no: 1126001, February 2017

    Google Scholar 

  8. Yu, R., Xue, G., Zhang, X.: Application provisioning in fog computing-enabled internet-of-things: a network perspective, pp. 783–791, April 2018

    Google Scholar 

  9. Mayer, R., Gupta, H., Saurez, E., Ramachandran, U.: Fogstore: toward a distributed data store for fog computing. In: 2017 IEEE Fog World Congress (FWC), pp. 1–6 (2017)

    Google Scholar 

  10. Yin, L., Luo, J., Luo, H.: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Trans. Ind. Inf. 14(10), 4712–4721 (2018)

    Article  Google Scholar 

  11. Solórzano, A., Fonollosa, J., Marco, S.: Improving calibration of chemical gas sensors for fire detection using small scale setups. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 1, p. 453, August 2017

    Article  Google Scholar 

  12. Okay, F.Y., Özdemir, S.: A fog computing based smart grid model. In: 2016 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2016)

    Google Scholar 

  13. Wang, Y., Chen, Q., Hong, T., Kang, C.: Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans. Smart Grid 10(3), 3125–3148 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Arjun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arjun, K.P., Bhanu, S.M.S. (2020). Generalized Dynamic Multilayer Fog Computing Architecture. In: Nain, N., Vipparthi, S. (eds) 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019. ICIoTCT 2019. Advances in Intelligent Systems and Computing, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-39875-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39875-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39874-3

  • Online ISBN: 978-3-030-39875-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics