Skip to main content

Combination Cancer Chemoprevention by Targeting the Epigenome

  • Chapter
  • First Online:
Natural Products for Cancer Chemoprevention

Abstract

The past 15 years have provided a wealth of information on the influence of natural products and dietary agents on epigenetic mechanisms, including DNA methylation, histone acetylation and methylation, and miRNAs. This chapter will give an overview of studies which have investigated potential additive or synergistic effects of chemopreventive agents targeting the epigenome when used in combination. These studies have focused mainly on breast and colon cancer and investigated green tea catechins and soy isoflavones, quercetin, resveratrol and pterostilbene, withaferin A, the short chain fatty acid butyrate, sulforaphane, selenium, curcumin, synthetic triterpenoids, and docosahexaenoic acid (DHA). Up to now, investigations were limited to in vitro cell culture and animal models. The most promising finding might be the reactivation of the estrogen receptor in estrogen receptor-negative breast cancer by various combinations of DNA demethylating and histone-modifying compounds, increasing susceptibility to anti-hormonal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal R et al (2015) Natural compounds: role in reversal of epigenetic changes. Biochemistry (Mosc) 80(8):972–989

    Article  CAS  Google Scholar 

  • Allis CD et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636

    Article  CAS  PubMed  Google Scholar 

  • Ashton JC (2015) Drug combination studies and their synergy quantification using the Chou-Talalay method—letter. Cancer Res 75(11):2400

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K et al (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279(49):51163–51171

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes CE, English DM, Cowley SM (2019) Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63(1):97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrera LN et al (2012) Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention. Proc Nutr Soc 71(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Barrera LN et al (2013) Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 52(4):1327–1341

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506

    Article  CAS  PubMed  Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711

    Article  CAS  PubMed  Google Scholar 

  • Berquin IM, Edwards IJ, Chen YQ (2008) Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 269(2):363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biersack B (2016) Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 1(1):12–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Boik JC, Newman RA, Boik RJ (2008) Quantifying synergism/antagonism using nonlinear mixed-effects modeling: a simulation study. Stat Med 27(7):1040–1061

    Article  PubMed  Google Scholar 

  • Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17(11):679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21(4):275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Bultman SJ (2017) Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 61(1)

    Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  • Carlos-Reyes A et al (2019) Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front Genet 10:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2013a) Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res 319(5):697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2013b) Enhancement of cisplatin-mediated apoptosis in ovarian cancer cells through potentiating G2/M arrest and p21 upregulation by combinatorial epigallocatechin gallate and sulforaphane. J Oncol 2013:872957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Zhao KN, Vitetta L (2019) Effects of intestinal microbial(−)elaborated butyrate on oncogenic signaling pathways. Nutrients 11(5):E1026

    Article  PubMed  CAS  Google Scholar 

  • Cho Y et al (2012) A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med (Maywood) 237(12):1387–1393

    Article  CAS  Google Scholar 

  • Cho Y et al (2014) Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp Biol Med (Maywood) 239(3):302–310

    Article  CAS  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  • Combs GF Jr, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17(5):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson LA et al (2009) n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30(12):2077–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl):2485S–2493S

    Article  CAS  PubMed  Google Scholar 

  • de Zeeuw D et al (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369(26):2492–2503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeb D et al (2014) Induction of apoptosis in pancreatic cancer cells by CDDO-Me involves repression of telomerase through epigenetic pathways. J Carcinog Mutagen 5:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  • DiMarco-Crook C, Xiao H (2015) Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annu Rev Food Sci Technol 6:505–526

    Article  CAS  PubMed  Google Scholar 

  • Dimri M et al (2010) Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis 31(3):489–495

    Article  CAS  PubMed  Google Scholar 

  • Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiology 161(Pt 2):229–243

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    Article  CAS  PubMed  Google Scholar 

  • Farhana L et al (2018) Role of microbiome in carcinogenesis process and epigenetic regulation of colorectal cancer. Methods Mol Biol 1856:35–55

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Koldobskiy MA, Gondor A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6(1):a018200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes GFS et al (2017) Epigenetic regulatory mechanisms induced by resveratrol. Nutrients 9(11):E1201

    Article  PubMed  CAS  Google Scholar 

  • Fujiki H et al (2018) Cancer prevention with green tea and its principal constituent, EGCG: from early investigations to current focus on human cancer stem cells. Mol Cells 41(2):73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YF, Tollefsbol TO (2015) Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem 22(17):2051–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauttam VK, Kalia AN (2013) Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system. J Adv Pharm Technol Res 4(2):108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhauser C (2013) Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329:73–132

    Article  CAS  PubMed  Google Scholar 

  • Gerhauser C (2014) Epigenetics, (poly) phenolics and cancer prevention. In: Romani A, Quideau S (eds) Recent advances in polyphenol research, vol 4. Wiley, New York, pp 143–207

    Google Scholar 

  • Gerhauser C (2018) Impact of dietary gut microbial metabolites on the epigenome. Philos Trans R Soc Lond Ser B Biol Sci 373(1748):20170359

    Article  CAS  Google Scholar 

  • Glozak MA et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  CAS  PubMed  Google Scholar 

  • Grosso G et al (2017) Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr Rev 75(6):405–419

    Article  PubMed  Google Scholar 

  • Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Guilloteau P et al (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384

    Article  CAS  PubMed  Google Scholar 

  • Gupta PB et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC et al (2013) Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res 57(9):1510–1528

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto R, Saloura V, Nakamura Y (2015) Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 15(2):110–124

    Article  CAS  PubMed  Google Scholar 

  • Hervouet E et al (2013) Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 8(3):237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyninck K et al (2016) Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway. Biochem Pharmacol 109:48–61

    Article  CAS  PubMed  Google Scholar 

  • Hong DS et al (2012) A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res 18(12):3396–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton CA, Fassett RG, Coombes JS (2013) Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev 71(11):709–726

    Article  PubMed  Google Scholar 

  • Hu Y et al (2013) Combination of selenium and green tea improves the efficacy of chemoprevention in a rat colorectal cancer model by modulating genetic and epigenetic biomarkers. PLoS One 8(5):e64362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12(13):1925–1956

    Article  CAS  PubMed  Google Scholar 

  • Huang D et al (2019) An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 123:574–594

    Article  CAS  PubMed  Google Scholar 

  • Huminiecki L, Horbanczuk J, Atanasov AG (2017) The functional genomic studies of curcumin. Semin Cancer Biol 46:107–118

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Seo YR (2010) Current issues of selenium in cancer chemoprevention. Biofactors 36(2):153–158

    CAS  PubMed  Google Scholar 

  • Kala R, Tollefsbol TO (2016) A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring estrogen receptor-alpha (ERalpha) expression in ERalpha-negative breast Cancer cells. PLoS One 11(5):e0155057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kala R et al (2015) Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent gamma-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15:672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashyap D et al (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomol Ther 9(5):174

    CAS  Google Scholar 

  • Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269(2):269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166–179

    CAS  PubMed  Google Scholar 

  • Kim E et al (2016) Histone and non-histone targets of dietary deacetylase inhibitors. Curr Top Med Chem 16(7):714–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269(2):243–261

    Article  CAS  PubMed  Google Scholar 

  • Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8(12):686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau ATY, Yu F-Y, Xu Y-M (2019) Epigenetic effects of essential fatty acids. Curr Pharmacol Rep 5(1):68–78

    Article  CAS  Google Scholar 

  • Lee IC, Choi BY (2016) Withaferin-A--A natural anticancer agent with pleitropic mechanisms of action. Int J Mol Sci 17(3):290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee PS et al (2018) Chemoprevention by resveratrol and pterostilbene: targeting on epigenetic regulation. Biofactors 44(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2013) Epigenetic reactivation of estrogen receptor-alpha (ERalpha) by genistein enhances hormonal therapy sensitivity in ERalpha-negative breast cancer. Mol Cancer 12:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y et al (2016) Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals. Epigenomics 8(8):1019–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Meeran SM, Tollefsbol TO (2017) Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERalpha expression. Sci Rep 7(1):9345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liby KT, Sporn MB (2012) Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev 64(4):972–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7(5):357–369

    Article  CAS  PubMed  Google Scholar 

  • Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80(12):1771–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman SM et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2019) The targeting of noncoding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncol Rep 42(1):20–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone MC et al (2017) Profound changes in miRNA expression during cancer initiation by aflatoxin B1 and their abrogation by the chemopreventive triterpenoid CDDO-Im. Mol Carcinog 56(11):2382–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J et al (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Magee PJ, Rowland I (2012) Soy products in the management of breast cancer. Curr Opin Clin Nutr Metab Care 15(6):586–591

    Article  CAS  PubMed  Google Scholar 

  • Martin SL, Royston KJ, Tollefsbol TO (2018) The role of non-coding RNAs and isothiocyanates in cancer. Mol Nutr Food Res 62(18):e1700913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marventano S et al (2015) A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? Int J Food Sci Nutr 66(6):611–622

    Article  PubMed  CAS  Google Scholar 

  • Massie CE, Mills IG, Lynch AG (2017) The importance of DNA methylation in prostate cancer development. J Steroid Biochem Mol Biol 166:1–15

    Article  CAS  PubMed  Google Scholar 

  • McNabney SM, Henagan TM (2017) Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9(12):E1348

    Article  PubMed  CAS  Google Scholar 

  • Meeran SM et al (2012) Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One 7(5):e37748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina M (2016) Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8(12):754

    Article  PubMed Central  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  CAS  PubMed  Google Scholar 

  • Mirza S et al (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16(1):23–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed A, Fox JT, Miller MS (2019) Cancer chemoprevention: preclinical in vivo alternate dosing strategies to reduce drug toxicities. Toxicol Sci 170:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinie B, Georgel P (2009) Genetic and epigenetic regulations of prostate cancer by genistein. Drug News Perspect 22(5):247–254

    Article  CAS  PubMed  Google Scholar 

  • Mukund V et al (2017) Genistein: its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 119:13–22

    Article  PubMed  Google Scholar 

  • Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2):315–325

    Article  CAS  PubMed  Google Scholar 

  • Myzak MC et al (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774

    Article  CAS  PubMed  Google Scholar 

  • National Library of Medicine (NLM) (2019), Clinicaltrial.gov

  • Ndlovu MN et al (2009) Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29(20):5488–5504

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13(12):691–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palliyaguru DL, Singh SV, Kensler TW (2016) Withania somnifera: from prevention to treatment of cancer. Mol Nutr Food Res 60(6):1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palliyaguru DL et al (2018) Isothiocyanates: translating the power of plants to people. Mol Nutr Food Res 62(18):e1700965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SM et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathania R et al (2016) Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res 76(11):3224–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul B, Li Y, Tollefsbol TO (2018) The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci 19(6):E1754

    Article  PubMed  CAS  Google Scholar 

  • Pavan AR et al (2016) Unraveling the anticancer effect of curcumin and resveratrol. Nutrients 8(11):628

    Article  PubMed Central  CAS  Google Scholar 

  • Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Pezzuto JM (2008) Resveratrol as an inhibitor of carcinogenensis. Pharm Biol 46(7–8):443–573

    Article  CAS  Google Scholar 

  • Pezzuto JM (2019) Resveratrol: twenty years of growth, development and controversy. Biomol Ther (Seoul) 27(1):1–14

    Article  Google Scholar 

  • Pudenz M, Roth K, Gerhauser C (2014) Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 6(10):4218–4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin S, Hou DX (2016) Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 60(8):1731–1755

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Garza SL et al (2018) Health effects of resveratrol: results from human intervention trials. Nutrients 10(12):1892

    Article  PubMed Central  CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64(4):527–542

    Article  CAS  PubMed  Google Scholar 

  • Rimando AM, Suh N (2008) Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 74(13):1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Royston KJ et al (2017) A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. Int J Mol Sci 18(5):1092

    Article  PubMed Central  CAS  Google Scholar 

  • Royston KJ et al (2018) Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res 368(1):67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M et al (2012) The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem Pharmacol 83(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Russo M et al (2016) Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem 196:589–600

    Article  CAS  PubMed  Google Scholar 

  • Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance - a review. Life Sci 203:255–267

    Article  CAS  PubMed  Google Scholar 

  • Saldanha SN, Kala R, Tollefsbol TO (2014) Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res 324(1):40–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Tena S et al (2013) Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1. Biochim Biophys Acta 1832(12):2264–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah MS et al (2011) Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet. Physiol Genomics 43(10):640–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah MS et al (2016a) Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt. Biochim Biophys Acta 1862(1):121–134

    Article  CAS  PubMed  Google Scholar 

  • Shah MS et al (2016b) Data describing the effects of dietary bioactive agents on colonic stem cell microRNA and mRNA expression. Data Brief 6:398–404

    Article  PubMed  Google Scholar 

  • Shankar E et al (2016) Dietary phytochemicals as epigenetic modifiers in cancer: promise and challenges. Semin Cancer Biol 40-41:82–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V et al (2016) Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin. Mol Cell Endocrinol 431:12–23

    Article  CAS  PubMed  Google Scholar 

  • Shortt J et al (2017) A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17(3):160–183

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Meeran SM, Katiyar SK (2014) Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 355(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soshnev AA, Josefowicz SZ, Allis CD (2016) Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell 62(5):681–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporn MB (1980) Combination chemoprevention of cancer. Nature 287(5778):107–108

    Article  CAS  PubMed  Google Scholar 

  • Steiner C et al (2008) Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 99(E Suppl 1):ES78–E108

    Article  PubMed  Google Scholar 

  • Stirzaker C et al (2014) Mining cancer methylomes: prospects and challenges. Trends Genet 30(2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Su X et al (2018) Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev 2018:5438179

    PubMed  PubMed Central  Google Scholar 

  • Szarc Vel Szic K et al (2017) Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 8(25):40434–40453

    PubMed  Google Scholar 

  • Tan JK et al (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol 35:371–402

    Article  CAS  PubMed  Google Scholar 

  • Taylor CK et al (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67(7):398–415

    Article  PubMed  Google Scholar 

  • Thomson CA, Dickinson S, Bowden GT (2010) Cruciferous vegetables, isothiocyanates, indoles, and cancer prevention. In: Milner JA, Romagnolo DF (eds) Bioactive compounds and cancer. Humana, Totowa, NJ, pp 535–566

    Chapter  Google Scholar 

  • Tortorella SM et al (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22(16):1382–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran K et al (2013) The combination of the histone deacetylase inhibitor vorinostat and synthetic triterpenoids reduces tumorigenesis in mouse models of cancer. Carcinogenesis 34(1):199–210

    Article  CAS  PubMed  Google Scholar 

  • Triff K, Kim E, Chapkin RS (2015) Chemoprotective epigenetic mechanisms in a colorectal cancer model: modulation by n-3 PUFA in combination with fermentable fiber. Curr Pharmacol Rep 1(1):11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triff K et al (2018) Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model. Int J Cancer 143(6):1402–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay AK, Cheng X (2011) Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog Drug Res 67:107–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanden Berghe W (2012) Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res 65(6):565–576

    Article  CAS  Google Scholar 

  • vel Szic KS et al (2010) Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 80(12):1816–1832

    Article  CAS  Google Scholar 

  • Verkerk R et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53(Suppl 2):S219

    Article  PubMed  Google Scholar 

  • Vigushin DM et al (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976

    CAS  PubMed  Google Scholar 

  • Vinceti M et al (2014) Selenium for preventing cancer. Cochrane Database Syst Rev 2014(3):CD005195

    PubMed Central  Google Scholar 

  • Voss AK, Thomas T (2018) Histone lysine and genomic targets of histone acetyltransferases in mammals. BioEssays 40(10):e1800078

    Article  PubMed  CAS  Google Scholar 

  • Vyas AR, Singh SV (2014) Molecular targets and mechanisms of cancer prevention and treatment by withaferin A, a naturally occurring steroidal lactone. AAPS J 16(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Vymetalkova V et al (2019) DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 69:73–92. https://doi.org/10.1016/j.mam.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  • Winter J et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • World Cancer Research Fund International/American Institute for Cancer Research (2017). Continuous update project report: diet, nutrition, physical activity and colorectal cancer. Available at: wcrf.org/colorectal-cancer-2017

  • Wu DS et al (2013) Epigallocatechin-3-gallate and trichostatin A synergistically inhibit human lymphoma cell proliferation through epigenetic modification of p16INK4a. Oncol Rep 30(6):2969–2975

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Li L, Li S (2015) Circulating microRNA-21 as a biomarker for the detection of various carcinomas: an updated meta-analysis based on 36 studies. Tumour Biol 36(3):1973–1981

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y et al (2018) Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytother Res 32(3):384–394

    Article  CAS  PubMed  Google Scholar 

  • Xu XY et al (2018) Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10(10):1553

    Article  PubMed Central  CAS  Google Scholar 

  • Yang CS, Wang H (2016) Cancer preventive activities of tea catechins. Molecules 21(12):1679

    Article  PubMed Central  CAS  Google Scholar 

  • Yang X et al (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61(19):7025–7029

    CAS  PubMed  Google Scholar 

  • Yang CS et al (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CS et al (2016) Lessons learned from cancer prevention studies with nutrients and non-nutritive dietary constituents. Mol Nutr Food Res 60(6):1239–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yum HW, Na HK, Surh YJ (2016) Anti-inflammatory effects of docosahexaenoic acid: implications for its cancer chemopreventive potential. Semin Cancer Biol 40-41:141–159

    Article  CAS  PubMed  Google Scholar 

  • Ziberna L et al (2017) Oleanolic acid alters multiple cell signaling pathways: implication in cancer prevention and therapy. Int J Mol Sci 18(3):E643

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa Gerhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerhauser, C. (2020). Combination Cancer Chemoprevention by Targeting the Epigenome. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_18

Download citation

Publish with us

Policies and ethics