Skip to main content

Pro-apoptotic Properties of Chemopreventive Agents

  • Chapter
  • First Online:

Abstract

Natural chemopreventive agents have long been validated to induce apoptosis in cancer cells. Extensive research is being conducted to elucidate the molecular pathways activated by natural agents and cause cellular death. They can act by directly suppressing molecules that inhibit apoptosis, activating pro-apoptotic proteins or by inhibiting pathways that promote survival. Understanding the mode of action of these natural compounds is of great value as this can lead to the development of targeted anti-cancer therapies. The use of natural agents as leads to develop chemotherapeutic drugs is preferred because of diminished side effects. This chapter focuses on natural compounds that have been established, by numerous studies, to be effective as anti-cancer agents. We describe the major apoptotic mechanisms of action of selected natural chemopreventive agents, including vitamin E, curcumin EGCG, quercetin, resveratrol and genistein. We also investigate the effects of these compounds in combination with natural or synthetic drugs. Finally, we take a detailed look at the efforts being made to incorporate these agents in nanoparticle formulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama T et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595

    CAS  PubMed  Google Scholar 

  • Alessi DR et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh AM et al (2015) Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. Biomed Res Int 2015:824746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alotaibi A et al (2013) Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs. Nanomedicine (Lond) 8(3):389–401

    Article  CAS  Google Scholar 

  • Anand P et al (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • Arabyan E et al (2018) Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res 156:128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya G, Das M, Sahoo SK (2018) Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother 102:555–566

    Article  CAS  PubMed  Google Scholar 

  • Asanuma H et al (2005) Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res 65(23):11018–11025

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Azandeh SS et al (2017) Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran J Pharm Res 16(3):868–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz MH et al (2006) Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther 5(5):1335–1341

    Google Scholar 

  • Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61(10):768–784

    Article  CAS  PubMed  Google Scholar 

  • Baechler SA et al (2016) Topoisomerase poisoning by genistein in the intestine of rats. Toxicol Lett 243:88–97

    Article  CAS  PubMed  Google Scholar 

  • Bahi N et al (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281(32):22943–22952

    Article  CAS  PubMed  Google Scholar 

  • Baksi R et al (2018) In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother 106:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Bandele OJ, Osheroff N (2007) Bioflavonoids as poisons of human topoisomerase II alpha and II beta. Biochemistry 46(20):6097–6108

    Article  CAS  PubMed  Google Scholar 

  • Benitez DA et al (2007) Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway. Br J Cancer 96(10):1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabeu E et al (2016) Novel Soluplus((R))-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines. Colloids Surf B Biointerfaces 140:403–411

    Article  CAS  PubMed  Google Scholar 

  • Bidere N et al (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278(33):31401–31411

    Article  CAS  PubMed  Google Scholar 

  • Bishayee K, Khuda-Bukhsh AR, Huh SO (2015) PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol Cells 38(6):518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldin MP et al (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 270(1):387–391

    Article  CAS  PubMed  Google Scholar 

  • Brown VA et al (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70(22):9003–9011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buki KG, Bauer PI, Kun E (1997) Isolation and identification of a proteinase from calf thymus that cleaves poly(ADP-ribose) polymerase and histone H1. Biochim Biophys Acta 1338(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Burz C et al (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 48(6):811–821

    Article  CAS  PubMed  Google Scholar 

  • Cai L et al (2017) Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res Lett 12(1):509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campana D et al (1993) Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood 81(4):1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Carstens MG, Rijcken CJ, Nostrum CF, Hennink WE (2008) Pharmaceutical micelles: combining longevity, stability, and stimuli sensitivity. In: Multifunctional pharmaceutical nanocarriers. Springer, New York, pp 263–308

    Google Scholar 

  • Chan KKL et al (2018) Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int 18:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang Z, Xing J, Yu X (2014) Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway. Tumour Biol 35(1):753–758

    Article  CAS  PubMed  Google Scholar 

  • Chicheportiche Y et al (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272(51):32401–32410

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan AM (1999) The apoptosome: heart and soul of the cell death machine. Neoplasia 1(1):5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury H et al (2017) Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm 529(1–2):506–522

    Article  CAS  PubMed  Google Scholar 

  • Chung SS et al (2018) Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget 9(68):32943–32957

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirman T et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279(5):3578–3587

    Article  CAS  PubMed  Google Scholar 

  • Clancy AA et al (2010) Measuring properties of nanoparticles in embryonic blood vessels: towards a physicochemical basis for nanotoxicity. Chem Phys Lett 488(4-6):99–111

    Article  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinou A, Kiguchi K, Huberman E (1990) Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res 50(9):2618–2624

    CAS  PubMed  Google Scholar 

  • Constantinou AI, Krygier AE, Mehta RR (1998a) Genistein induces maturation of cultured human breast cancer cells and prevents tumor growth in nude mice. Am J Clin Nutr 68(6 Suppl):1426S–1430S

    Article  CAS  PubMed  Google Scholar 

  • Constantinou AI, Kamath N, Murley JS (1998b) Genistein inactivates bcl-2, delays the G2/M phase of the cell cycle, and induces apoptosis of human breast adenocarcinoma MCF-7 cells. Eur J Cancer 34(12):1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Constantinou C, Papas A, Constantinou AI (2008) Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int J Cancer 123(4):739–752

    Article  CAS  PubMed  Google Scholar 

  • Constantinou C, Papas KA, Constantinou AI (2009) Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr Cancer Drug Targets 9(6):717–728

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P et al (1979) Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 68(12):1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Crawford A, Nahta R (2011) Targeting Bcl-2 in herceptin-resistant breast cancer cell lines. Curr Pharmacogenomics Person Med 9(3):184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Differ 16(7):935–938

    Article  CAS  PubMed  Google Scholar 

  • Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13(24):7254–7263

    Article  CAS  PubMed  Google Scholar 

  • Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543–8567

    Article  CAS  PubMed  Google Scholar 

  • de Pace RC et al (2013) Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res 23(3):187–196

    Article  PubMed  CAS  Google Scholar 

  • Dintaman JM, Silverman JA (1999) Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res 16(10):1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Dorai T, Gehani N, Katz A (2000) Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol Urol 4(1):1–6

    CAS  PubMed  Google Scholar 

  • Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379

    Article  CAS  PubMed  Google Scholar 

  • Du C et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Touny LH, Banerjee PP (2009) Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Res 69(8):3695–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enari M et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50

    Article  CAS  PubMed  Google Scholar 

  • Esposti MD (2002) The roles of Bid. Apoptosis 7(5):433–440

    Article  CAS  PubMed  Google Scholar 

  • Fang JY et al (2006) Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. J Dermatol Sci 42(2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Feng SS (2006) New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine (Lond) 1(3):297–309

    Article  CAS  Google Scholar 

  • Frojdo S et al (2007) Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 406(3):511–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao X et al (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4(22):7021–7030

    Article  CAS  PubMed  Google Scholar 

  • Gaonkar RH et al (2017) Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci Rep 7(1)

    Google Scholar 

  • Garrido C et al (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13(9):1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Geng T et al (2017) Resveratrol-loaded albumin nanoparticles with prolonged blood circulation and improved biocompatibility for highly effective targeted pancreatic tumor therapy. Nanoscale Res Lett 12(1):437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghiotto F, Fais F, Bruno S (2010) BH3-only proteins: the death-puppeteer’s wires. Cytometry A 77(1):11–21

    PubMed  Google Scholar 

  • Giam M, Huang DC, Bouillet P (2008) BH3-only proteins and their roles in programmed cell death. Oncogene 27(Suppl 1):S128–S136

    Article  CAS  PubMed  Google Scholar 

  • Gobeil S et al (2001) Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8(6):588–594

    Article  CAS  PubMed  Google Scholar 

  • Granado-Serrano AB et al (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136(11):2715–2721

    Article  CAS  PubMed  Google Scholar 

  • Granja A, Pinheiro M, Reis S (2016) Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients 8(5)

    Google Scholar 

  • Gu Y et al (2016) Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. Int J Nanomedicine 11:5757–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Haque A et al (2015) Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2. Apoptosis 20(7):986–995

    Article  CAS  PubMed  Google Scholar 

  • Hasan M et al (2014) Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461(1-2):519–528

    Article  CAS  PubMed  Google Scholar 

  • Hastak K et al (2003) Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 22(31):4851–4859

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa S et al (2001) Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun 285(5):1102–1106

    Article  CAS  PubMed  Google Scholar 

  • He B et al (2013) Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integr Cancer Ther 12(3):264–270

    Article  CAS  PubMed  Google Scholar 

  • Hilchie AL et al (2010) Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr Cancer 62(3):379–389

    Article  CAS  PubMed  Google Scholar 

  • Hill MM et al (2004) Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23(10):2134–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinds MG, Day CL (2005) Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol 15(6):690–699

    Article  CAS  PubMed  Google Scholar 

  • Hirsch T et al (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15(13):1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25(5):259–264

    Article  CAS  PubMed  Google Scholar 

  • Hong JH et al (2006) The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Hou W et al (2016) pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Nanoscale 8(1):104–116

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81(4):495–504

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Zhu J, Qiu L (2014) Polymer micelle-based combination therapy of paclitaxel and resveratrol with enhanced and selective antitumor activity. RSC Adv 4:64151–64161

    Google Scholar 

  • Hu YQ, Wang J, Wu JH (2016) Administration of resveratrol enhances cell-cycle arrest followed by apoptosis in DMBA-induced skin carcinogenesis in male Wistar rats. Eur Rev Med Pharmacol Sci 20(13):2935–2946

    PubMed  Google Scholar 

  • Huang H et al (2015) Combination of alpha-tomatine and curcumin inhibits growth and induces apoptosis in human prostate cancer cells. PLoS One 10(12):e0144293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E et al (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  CAS  PubMed  Google Scholar 

  • Jiao D et al (2016) Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics 3:16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Yang Q, Zhang Y (2017) Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int J Nanomed 12:5109–5118

    Article  CAS  Google Scholar 

  • Joza N et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410(6828):549–554

    Article  CAS  PubMed  Google Scholar 

  • Jung KH et al (2015) Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 478(1):251–257

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  PubMed  Google Scholar 

  • Kang SJ et al (2002) Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death Differ 9(10):1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S et al (2011) Induction of mitochondrial pathways and endoplasmic reticulum stress for increasing apoptosis in ectopic and orthotopic neuroblastoma xenografts. J Cancer Ther 2(2):77–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann SH (1998) Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim Biophys Acta 1400(1-3):195–211

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SH et al (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53(17):3976–3985

    CAS  PubMed  Google Scholar 

  • Khan N et al (2014) Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35(2):415–423

    Article  CAS  PubMed  Google Scholar 

  • Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3(11):1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ et al (2008) Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res 33(6):971–979

    Article  CAS  PubMed  Google Scholar 

  • Kim TG et al (2009) Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel. Biomacromolecules 10(6):1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein JA et al (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419(6905):367–374

    Article  CAS  PubMed  Google Scholar 

  • Koning GA, Storm G (2003) Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today 8(11):482–483

    Article  PubMed  Google Scholar 

  • Kothakota S et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278(5336):294–298

    Article  CAS  PubMed  Google Scholar 

  • Kowshik J et al (2014) Ellagic acid inhibits VEGF/VEGFR2, PI3K/Akt and MAPK signaling cascades in the hamster cheek pouch carcinogenesis model. Anticancer Agents Med Chem 14(9):1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Kumar S et al (2012) Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoScience 2(4):227–250. https://doi.org/10.1007/s12668-012-0060-7

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Kundur S et al (2019) Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J Cell Physiol 234(7):11103–11118

    Google Scholar 

  • Kurosaka K et al (2003) Silent cleanup of very early apoptotic cells by macrophages. J Immunol 171(9):4672–4679

    Article  CAS  PubMed  Google Scholar 

  • Labhasetwar V, Song CX, Levy RJ (1997) Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev 24(1):63–85

    Article  CAS  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Levine DH et al (2008) Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods 46(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412(6842):95–99

    Article  CAS  PubMed  Google Scholar 

  • Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6):1322–1331

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2012) Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J 279(12):2247–2259

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2014) Preparation of curcumin micelles and the in vitro and in vivo evaluation for cancer therapy. J Biomed Nanotechnol 10(8):1458–1468

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2016) Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int J Pharm 512(1):262–272

    Article  CAS  PubMed  Google Scholar 

  • Liang C et al (2012) Genistein potentiates the anti-cancer effects of gemcitabine in human osteosarcoma via the downregulation of Akt and nuclear factor-kappaB pathway. Anticancer Agents Med Chem 12(5):554–563

    Article  CAS  PubMed  Google Scholar 

  • Lin C et al (2012) Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol 104(3):395–400

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2013) PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. Am J Chin Med 41(3):629–642

    Article  CAS  PubMed  Google Scholar 

  • Liu D et al (2014) Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo. Oncol Lett 8(6):2806–2810

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XX et al (2016) Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region. Oncotarget 7(19):27267–27279

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lin L, Song J, Zhao Y, Chao Z, Li H (2017) Preparation, characterization and anticanceractivities of resveratrol loaded redox-sensitive F127-SS-TOC micelles. RSC Adv 7:47091–47098

    Google Scholar 

  • Long Q et al (2013) Induction of apoptosis and inhibition of angiogenesis by PEGylated liposomal quercetin in both cisplatin-sensitive and cisplatin-resistant ovarian cancers. J Biomed Nanotechnol 9(6):965–975

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo HK, Susin SA (2007) Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updat 10(6):235–255

    Article  CAS  PubMed  Google Scholar 

  • Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14(4):641–650

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2014) Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol Pharm 11(8):2623–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YS et al (2018) Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol Lett 15(6):9663–9672

    PubMed  PubMed Central  Google Scholar 

  • Macagnan FT, da Silva LP, Hecktheuer LH (2016) Dietary fibre: the scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Res Int 85:144–154

    Article  CAS  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar AP et al (2009) Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr Cancer 61(4):544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovits J et al (1995) Genistein resistance in human leukaemic CCRF-CEM cells: selection of a diploid cell line with reduced DNA topoisomerase II beta isoform. Biochem Pharmacol 50(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Mason KD et al (2008) In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proc Natl Acad Sci USA 105(46):17961–17966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier MAR, Aerts SNH, Staal BBP, Rasa M, Schubert US (2005) PEO-b-PCL block copolymers: synthesis, detailed characterization, and selected micellar drug encapsulation behavior. Macromol Rapid Comm 26:1918–1924

    Article  CAS  Google Scholar 

  • Men K et al (2014) Nanoparticle-delivered quercetin for cancer therapy. Anti Cancer Agents Med Chem 14(6):826–832

    Article  CAS  Google Scholar 

  • Michael McClain R et al (2006) Genetic toxicity studies with genistein. Food Chem Toxicol 44(1):42–55

    Article  CAS  PubMed  Google Scholar 

  • Moubarak RS et al (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu L, Feng SS (2002) Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release 80(1–3):129–144

    Article  CAS  PubMed  Google Scholar 

  • Mu L, Elbayoumi TA, Torchilin VP (2005) Mixed micelles made of poly(ethylene glycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm 306(1-2):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A et al (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S et al (2014) Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 10(5):2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Narayanan S et al (2015) Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 11(6):1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Nassir AM et al (2018) Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm J 26(6):876–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Neophytou CM, Constantinou AI (2015) Drug delivery innovations for enhancing the anticancer potential of vitamin E isoforms and their derivatives. Biomed Res Int 2015:584862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neophytou CM et al (2014) D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol 89(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J (2003) Vitamin E succinate and cancer treatment: a vitamin E prototype for selective antitumour activity. Br J Cancer 89(10):1822–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T et al (2014) Designing a better theranostic nanocarrier for cancer applications. Nanomedicine 9(15):2371–2386

    Article  CAS  PubMed  Google Scholar 

  • Niu G et al (2011) Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sin (Shanghai) 43(1):30–37

    Article  CAS  Google Scholar 

  • Northfelt DW et al (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16(7):2445–2451

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wang Y, Feng SS (2008) Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging. Biotechnol Bioeng 101(3):622–633

    Article  CAS  PubMed  Google Scholar 

  • Parhi P, Mohanty C, Sahoo SK (2011) Enhanced cellular uptake and in vivo pharmacokinetics of rapamycin-loaded cubic phase nanoparticles for cancer therapy. Acta Biomater 7(10):3656–3669

    Article  CAS  PubMed  Google Scholar 

  • Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  • Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10(5):545–551

    Article  CAS  PubMed  Google Scholar 

  • Pham J, Brownlow B, Elbayoumi T (2013) Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers. Mol Pharm 10(10):3789–3800

    Article  CAS  PubMed  Google Scholar 

  • Phan V et al (2013) Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. J Drug Target 21(10):1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3(4):279–296

    Article  CAS  Google Scholar 

  • Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo-Guisado E et al (2005) Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappa B. Int J Cancer 115(1):74–84. (Erratum in vol 116, pg 1004, 2005)

    Article  CAS  PubMed  Google Scholar 

  • Prietsch RF et al (2014) Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 390(1-2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Ramadass SK et al (2015) Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf B Biointerfaces 125:65–72

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan S, Halagowder D, Sivasithambaram ND (2015) Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS One 10(10):e0141370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapoport N (2004) Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm 277(1-2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Reimertz C et al (2001) Ca(2+)-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1). J Neurochem 78(6):1256–1266

    Article  CAS  PubMed  Google Scholar 

  • Rouleau M et al (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan G, Feng SS (2003) Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24(27):5037–5044

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Moscardo F et al (2005) Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 106(9):3214–3222

    Article  CAS  PubMed  Google Scholar 

  • Saelens X et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874

    Article  CAS  PubMed  Google Scholar 

  • Saelens X et al (2005) Protein synthesis persists during necrotic cell death. J Cell Biol 168(4):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengkrit N et al (2014) Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces 114:349–356

    Article  CAS  PubMed  Google Scholar 

  • Sah JF et al (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 279(13):12755–12762

    Article  CAS  PubMed  Google Scholar 

  • Sale EM, Sale GJ (2008) Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 65(1):113–127

    Article  CAS  PubMed  Google Scholar 

  • Salti GI et al (2000) Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer 36(6):796–802

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788

    Article  CAS  PubMed  Google Scholar 

  • Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64(20):7183–7190

    Article  CAS  PubMed  Google Scholar 

  • Seo HS et al (2011) Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res 31(10):3301–3313

    CAS  PubMed  Google Scholar 

  • Sercombe L et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma G et al (2015) Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm Res 32(2):723–735

    Article  CAS  PubMed  Google Scholar 

  • She QB et al (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61(4):1604–1610

    CAS  PubMed  Google Scholar 

  • Shim JH et al (2008) (-)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 283(42):28370–28379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui IA et al (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69(5):1712–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor Nf-kappa-B is suppressed by curcumin (diferulolylmethane). J Biol Chem 270(42):24995–25000

    Article  CAS  PubMed  Google Scholar 

  • Singh SK et al (2017) Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21(WAF1/CIP1) and p27(KIP1) pathway. Oncotarget 8(10):17216–17228

    Article  PubMed  PubMed Central  Google Scholar 

  • Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326

    Article  CAS  PubMed  Google Scholar 

  • Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7(4):321–328

    Article  CAS  PubMed  Google Scholar 

  • Somanath PR et al (2009) The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene 28(25):2365–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Stephens L et al (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279(5351):710–714

    Article  CAS  PubMed  Google Scholar 

  • Suliman A et al (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20(17):2122–2133

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang C, Li P (2014) Copolymeric micelles for delivery of EGCG and cyclopamine to pancreatic cancer cells. Nutr Cancer 66(5):896–903

    Article  CAS  PubMed  Google Scholar 

  • Sylvester PW (2007) Vitamin E and apoptosis. Vitam Horm 76:329–356

    Article  CAS  PubMed  Google Scholar 

  • Tessitore L et al (2000) Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21(8):1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Trump BF et al (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23(23):4679–4689

    Google Scholar 

  • Vanags DM et al (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271(49):31075–31085

    Article  CAS  PubMed  Google Scholar 

  • Vancompernolle K et al (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438(3):150–158

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe T et al (2004) Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 279(9):7925–7933

    Article  CAS  PubMed  Google Scholar 

  • van Hille B, Perrin D, Hill BT (1999) Differential in vitro interactions of a series of clinically useful topoisomerase-interacting compounds with the cleavage/religation activity of the human topoisomerase IIalpha and IIbeta isoforms. Anticancer Drugs 10(6):551–560

    Article  CAS  PubMed  Google Scholar 

  • van Loo G et al (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F et al (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar MR et al (2016) Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf B Biointerfaces 145:479–491

    Article  CAS  PubMed  Google Scholar 

  • Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296(5573):1635–1636

    Article  CAS  PubMed  Google Scholar 

  • Wang JB et al (2009) Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J Zhejiang Univ Sci B 10(2):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XX et al (2011) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32(24):5673–5687

    Article  CAS  PubMed  Google Scholar 

  • Wang S et al (2014) Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells. Am J Chin Med 42(5):1279–1300

    Article  CAS  PubMed  Google Scholar 

  • Wang S et al (2015) mPEG-b-PCL/TPGS mixed micelles for delivery of resveratrol in overcoming resistant breast cancer. Expert Opin Drug Deliv 12(3):361–373

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2017a) The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int J Nanomed 12:1369–1384

    Article  CAS  Google Scholar 

  • Wang W et al (2017b) Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 22(11)

    Google Scholar 

  • Wang YR et al (2018) Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: studies in vitro and in vivo. Biochem Biophys Res Commun 499(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Weeds AG et al (1986) Preparation and characterization of pig plasma and platelet gelsolins. Eur J Biochem 161(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Win KY, Feng SS (2006) In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials 27(10):2285–2291

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Muller RH (2003) The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. Eur J Pharm Biopharm 56(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu G et al (2015) Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomed 10:2051–2063

    Article  CAS  Google Scholar 

  • Yamasaki M et al (2013) Genistein induces apoptotic cell death associated with inhibition of the NF-kappaB pathway in adult T-cell leukemia cells. Cell Biol Int 37(7):742–747

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2015) Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 5:10322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZP et al (2006) Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 12(10):3193–3199

    Article  CAS  PubMed  Google Scholar 

  • Zeiss CJ (2003) The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40(5):481–495

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813(11):1978–1986

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tan S, Feng SS (2012) Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 33(19):4889–4906

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2013) Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol 43(1):289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2014) TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. Int J Pharm 476(1-2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang P et al (2017) Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice. J Exp Clin Cancer Res 36(1):190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MH et al (2017) Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro. Exp Ther Med 14(6):5503–5508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou N et al (2009) Genistein inhibition of topoisomerase IIalpha expression participated by Sp1 and Sp3 in HeLa cell. Int J Mol Sci 10(7):3255–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P et al (2017) Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-kappaB/slug/E-cadherin pathway. BMC Cancer 17(1):813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Anquillare ELB, Farokhzad OC, Shi J (2014) Polymer- and protein-based nanotechnologies for cancer theranostics. In: Chen X, Wong S (eds) Cancer theranostics. Academic, Oxford pp 419–436

    Google Scholar 

  • Zhu WT et al (2017) Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer. Int J Nanomed 12:2621–2634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the University of Cyprus and was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: INTERNATIONAL/OTHER/0118/0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana M. Neophytou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neophytou, C.M., Gregoriou, Y., Constantinou, A.I. (2020). Pro-apoptotic Properties of Chemopreventive Agents. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_16

Download citation

Publish with us

Policies and ethics