Skip to main content

Xanthohumol and Structurally Related Prenylflavonoids for Cancer Chemoprevention and Control

  • Chapter
  • First Online:
Natural Products for Cancer Chemoprevention

Abstract

Humans are almost exclusively exposed to the prenylated hop chalcone, xanthohumol, by consumption of beer and hop-derived dietary supplements. Its spontaneous isomerization into the flavanone, isoxanthohumol, in conjunction with gut microbial and hepatic metabolism, produces several xanthohumol-derived prenylated flavonoids that exert bioactivities relevant to cancer chemoprevention. The mechanisms by which these prenylflavonoids may act to counter tumorigenesis, as well as carcinogenesis and metastasis, include detoxifying carcinogens, reducing inflammation and inflammation-driven angiogenesis, and promoting apoptotic cell death. Following our discoveries that xanthohumol has the ability to inhibit cytochrome P450 enzymes that metabolically activate procarcinogens and induce the carcinogen-detoxifying quinone reductase, other researchers have investigated the effects of xanthohumol on the activity of these metabolic enzymes in various cancer cell lines using carcinogenic substrates as well as its effects on transcriptional activation of metabolic genes in animal models. Another group of metabolic enzymes, glutathione S-transferases, detoxify electrophilic carcinogens and appear to be transcriptionally induced by xanthohumol via activation of Nrf2. Various human malignancies have in common that they activate the pro-inflammatory NFκB pathway to induce the expression of inflammatory cytokines, growth factors, and anti-apoptotic genes. Many researchers, including our laboratory, have shown that xanthohumol and related flavonoids inhibit NFκB activation in various cancer cell lines. Furthermore, xanthohumol can inhibit tumor growth in vivo by inhibiting the pro-angiogenic NFκB and Akt pathways. Tumor cells differ from normal cells by their increased metabolic rate and demand for oxygen, which forces them to switch from oxidative phosphorylation to aerobic glycolysis to meet energy demands while coping with increased oxidative stress and apoptotic risk. Acting as mild mitochondrial uncouplers, prenylated flavonoids lower the mitochondrial inner membrane potential thereby promoting apoptosis, counteracting anti-apoptotic pathways in tumor cells, and decreasing the metastatic potential of cancer cells. While xanthohumol and other prenylated flavonoids have low potential for use as effective cancer therapeutics by themselves, they hold promise for combination therapy because tumor cells cannot develop resistance against the mitochondrial uncoupling effects of prenylated flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20:527–529

    Article  CAS  PubMed  Google Scholar 

  • Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I (2013) A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. Biofactors 39:441–447

    Article  CAS  PubMed  Google Scholar 

  • Alsaleh M, Leftley Z, Barbera TA, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Cox IJ, Chamodol N, Syms RR, Andrews RH, Taylor-Robinson SD (2019) Cholangiocarcinoma: a guide for the nonspecialist. Int J Gen Med 12:13–23

    Article  CAS  PubMed  Google Scholar 

  • Arczewska M, Kamiński DM, Gieroba B, Gagoś M (2017) Acid-base properties of xanthohumol: a computational and experimental investigation. J Nat Prod 80:3194–3202

    Article  CAS  PubMed  Google Scholar 

  • Auffinger B, Thaci B, Ahmed A, Ulasov I, Lesniak MS (2013) MicroRNA targeting as a therapeutic strategy against glioma. Curr Mol Med 13:535–542

    Article  CAS  PubMed  Google Scholar 

  • Bahar E, Kim JY, Yoon H (2019) Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers (Basel) 11. https://doi.org/10.3390/cancers11030338

  • Barron D, Ibrahim RK (1996) Isoprenylated flavonoids—a survey. Phytochemistry 43:924–982

    Article  Google Scholar 

  • Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J (2018) Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules 23. https://doi.org/10.3390/molecules23112922

  • Benelli R, Venè R, Ciarlo M, Carlone S, Barbieri O, Ferrari N (2012) The AKT/NF-κB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochem Pharmacol 83:1634–1642

    Article  CAS  PubMed  Google Scholar 

  • Blanquer-Rosselló MM, Oliver J, Valle A, Roca P (2013) Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem 114:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli UA (2007) Mechanistic toxicology. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Bolca S, Possemiers S, Maervoet V, Huybrechts I, Heyerick A, Vervarcke S, Depypere H, De Keukeleire D, Bracke M, De Henauw S, Verstraete W, Van de Wiele T (2007) Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. Br J Nutr 98:950–959

    Article  CAS  PubMed  Google Scholar 

  • Bolton JL, Dunlap TL, Hajirahimkhan DA, Mbachu OC, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM (2019) The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol 32(8):1732

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater JA, Goodman KA, Kalyan A, Mulcahy MF (2016) Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ Book 35:e194–e203

    Article  PubMed  Google Scholar 

  • Brodziak-Jarosz L, Fujikawa Y, Pastor-Flores D, Kasikci S, Jirásek P, Pitzl S, Owen RW, Klika KD, Gerhäuser C, Amslinger S, Dick TP (2016) A click chemistry approach identifies target proteins of xanthohumol. Mol Nutr Food Res 60:737–748

    Article  CAS  PubMed  Google Scholar 

  • Burrows N, Babur M, Resch J, Williams KJ, Brabant G (2011) Hypoxia-inducible factor in thyroid carcinoma. J Thyroid Res 2011:762905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catz SD, Johnson JL (2003) BCL-2 in prostate cancer: a minireview. Apoptosis 8:29–37

    Article  CAS  PubMed  Google Scholar 

  • Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2:135–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen PH, Chang CK, Shih CM, Cheng CH, Lin CW, Lee CC, Liu AJ, Ho KH, Chen KC (2016) The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology 110:362–375

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Xiao B, Chen L, Bai B, Zhang Y, Xu Z, Fu L, Liu Z, Li X, Zhao Y, Liang G (2017) Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury. Eur J Med Chem 139:726–740

    Article  CAS  PubMed  Google Scholar 

  • Cho YC, Kim HJ, Kim YJ, Lee KY, Choi HJ, Lee IS, Kang BY (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int Immunopharmacol 8:567–573

    Article  CAS  PubMed  Google Scholar 

  • Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E (2007) Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 246:201–209

    Article  CAS  PubMed  Google Scholar 

  • Colman E (2007) Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul Toxicol Pharmacol 48:115–117

    Article  CAS  PubMed  Google Scholar 

  • Cömert Önder F, Ay M, Aydoğan Türkoğlu S, Tura Köçkar F, Çelik A (2016) Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies. J Enzyme Inhib Med Chem 31:90–98

    Article  PubMed  CAS  Google Scholar 

  • Cseh B, Doma E, Baccarini M (2014) “RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 588:2398–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  • de Montgolfier O (2014) Development of xanthohumol as mild mitochondrial uncouplers for treatment of metabolic syndrome. College of Pharmacy, vol. Master’s. Oregon State University, Corvallis, p 49

    Google Scholar 

  • Deeb D, Gao X, Jiang H, Arbab AS, Dulchavsky SA, Gautam SC (2010) Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res 30:3333–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653

    Article  CAS  PubMed  Google Scholar 

  • Dell’Eva R, Ambrosini C, Vannini N, Piaggio G, Albini A, Ferrari N (2007) AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer 110:2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Delmulle L, Bellahcène A, Dhooge W, Comhaire F, Roelens F, Huvaere K, Heyerick A, Castronovo V, De Keukeleire D (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13:732–734

    Article  CAS  PubMed  Google Scholar 

  • Delmulle L, Vanden Berghe T, Keukeleire DD, Vandenabeele P (2008) Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 22:197–203

    Article  CAS  PubMed  Google Scholar 

  • Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, Pauli GF, Farnsworth NR, Mesecar AD, van Breemen RB, Bolton JL (2005) Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol 18:1296–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz BM, Hagos GK, Eskra JN, Wijewickrama GT, Anderson JR, Nikolic D, Guo J, Wright B, Chen SN, Pauli GF, van Breemen RB, Bolton JL (2013) Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo. Mol Nutr Food Res 57:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokduang H, Yongvanit P, Namwat N, Pairojkul C, Sangkhamanon S, Yageta MS, Murakami Y, Loilome W (2016) Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol Rep 35:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Dorn C, Weiss TS, Heilmann J, Hellerbrand C (2010) Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol 36:435–441

    CAS  PubMed  Google Scholar 

  • Dorn C, Heilmann J, Hellerbrand C (2012) Protective effect of xanthohumol on toxin-induced liver inflammation and fibrosis. Int J Clin Exp Pathol 5:29–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci U S A 102:10070–10075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggler AL, Luo Y, van Breemen RB, Mesecar AD (2007) Identification of the highly reactive cysteine 151 in the chemopreventive agent-sensor Keap1 protein is method-dependent. Chem Res Toxicol 20:1878–1884

    Article  CAS  PubMed  Google Scholar 

  • Engelsgjerd S, Kunnimalaiyaan S, Kandil E, Gamblin TC, Kunnimalaiyaan M (2019) Xanthohumol increases death receptor 5 expression and enhances apoptosis with the TNF-related apoptosis-inducing ligand in neuroblastoma cell lines. PLoS One 14:e0213776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenselau C, Talalay P (1973) Is estrogenic activity present in hops? Food Cosmet Toxicol 11:597–603

    Article  CAS  PubMed  Google Scholar 

  • Ferk F, Huber WW, Filipic M, Bichler J, Haslinger E, Misík M, Nersesyan A, Grasl-Kraupp B, Zegura B, Knasmüller S (2010) Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ). Mutat Res 691:17–22

    Article  CAS  PubMed  Google Scholar 

  • Ferk F, Misik M, Nersesyan A, Pichler C, Jager W, Szekeres T, Marculescu R, Poulsen HE, Henriksen T, Bono R, Romanazzi V, Al-Serori H, Biendl M, Wagner KH, Kundi M, Knasmuller S (2016) Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: results of human intervention trials. Mol Nutr Food Res 60:773–786

    Article  CAS  PubMed  Google Scholar 

  • Festa M, Capasso A, D’Acunto CW, Masullo M, Rossi AG, Pizza C, Piacente S (2011) Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. J Nat Prod 74:2505–2513

    Article  CAS  PubMed  Google Scholar 

  • Festa M, Caputo M, Cipolla C, D’Acunto C, Rossi A, Tecce M, Capasso A (2013) The involvement of xanthohumol in the expression of annexin in human malignant glioblastoma cells. Open Biochem J 7:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca BF, Predes D, Cerqueira DM, Reis AH, Amado NG, Cayres MC, Kuster RM, Oliveira FL, Mendes FA, Abreu JG (2015) Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro. PLoS One 10:e0120919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu W, Chen L, Wang Z, Zhao C, Chen G, Liu X, Dai Y, Cai Y, Li C, Zhou J, Liang G (2016) Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2. Drug Des Devel Ther 10:455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhauser C (2005) Beer constituents as potential cancer chemopreventive agents. Eur J Cancer 41:1941–1954

    Article  PubMed  CAS  Google Scholar 

  • Gerhäuser C, Frank N (2005) Xanthohumol, a new all-rounder? Mol Nutr Food Res 49:821–823

    Article  PubMed  Google Scholar 

  • Gerhauser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf HR, Frank N, Bartsch H, Becker H (2002) Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol Cancer Ther 1:959–969

    CAS  PubMed  Google Scholar 

  • Guo J, Nikolic D, Chadwick LR, Pauli GF, van Breemen RB (2006) Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.). Drug Metab Dispos 34:1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Zhang B, Liu S, Jin M (2018) Xanthohumol induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI3K/Akt/mTOR-kinase in human gastric cancer cells. Biomed Pharmacother 106:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113:2003–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerdt BG, Houston MA, Wilson AJ, Augenlicht LH (2003) The intrinsic mitochondrial membrane potential (Deltapsim) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis. Cancer Res 63:6311–6319

    CAS  PubMed  Google Scholar 

  • Heerdt BG, Houston MA, Augenlicht LH (2005) The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res 65:9861–9867

    Article  CAS  PubMed  Google Scholar 

  • Henderson MC, Miranda CL, Stevens JF, Deinzer ML, Buhler DR (2000) In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30:235–251

    Article  CAS  PubMed  Google Scholar 

  • Ho KH, Chang CK, Chen PH, Wang YJ, Chang WC, Chen KC (2018) miR-4725-3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. J Neurochem 146:269–288

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamnongkan W, Thanee M, Yongvanit P, Loilome W, Thanan R, Kimawaha P, Boonmars T, Silakit R, Namwat N, Techasen A (2018) Antifibrotic effect of xanthohumol in combination with praziquantel is associated with altered redox status and reduced iron accumulation during liver fluke-associated cholangiocarcinogenesis. PeerJ 6:e4281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9:530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaewpitoon N, Kaewpitoon SJ, Pengsaa P, Sripa B (2008) Opisthorchis viverrini: the carcinogenic human liver fluke. World J Gastroenterol 14:666–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Park MA, Heo SW, Park SY, Kang KW, Park PH, Kim JA (2013) The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim Biophys Acta 1830:2638–2648

    Article  CAS  PubMed  Google Scholar 

  • Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246

    PubMed  Google Scholar 

  • Kirkwood JS, Legette LL, Miranda CL, Jiang Y, Stevens JF (2013) A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J Biol Chem 288:19000–19013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kłósek M, Mertas A, Król W, Jaworska D, Szymszal J, Szliszka E (2016) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-a natural compound present in Humulus lupulus L. Int J Mol Sci 17. https://doi.org/10.3390/ijms17060837

  • Knight T, Irving JA (2014) Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol 4:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Krajka-Kuzniak V, Paluszczak J, Baer-Dubowska W (2013) Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol in Vitro 27:149–156

    Article  CAS  PubMed  Google Scholar 

  • Krajnović T, Kaluđerović GN, Wessjohann LA, Mijatović S, Maksimović-Ivanić D (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol Res 105:62–73

    Article  PubMed  CAS  Google Scholar 

  • Kunnimalaiyaan S, Trevino J, Tsai S, Gamblin TC, Kunnimalaiyaan M (2015) Xanthohumol-mediated suppression of Notch1 signaling is associated with antitumor activity in human pancreatic cancer cells. Mol Cancer Ther 14:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60:3175–3182

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim HJ, Lee JS, Lee IS, Kang BY (2007) Inhibition of topoisomerase I activity and efflux drug transporters’ expression by xanthohumol. From hops. Arch Pharm Res 30:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, Choi HJ (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 58:153–160

    Article  CAS  PubMed  Google Scholar 

  • Legette L, Ma L, Reed RL, Miranda CL, Christensen JM, Rodriguez-Proteau R, Stevens JF (2012) Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol Nutr Food Res 56:466–474

    Article  CAS  PubMed  Google Scholar 

  • Legette L, Karnpracha C, Reed RL, Choi J, Bobe G, Christensen JM, Proteau RR, Purnell J, Stevens JF (2014) Human pharmacokinetics of xanthohumol, an anti-hyperglycemic flavonoid from hops. Mol Nutr Food Res 58:248–255

    Article  CAS  PubMed  Google Scholar 

  • Li F, Yao Y, Huang H, Hao H, Ying M (2018) Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways. Int Immunopharmacol 61:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Jiang T, Zhou K, Xu L, Chen B, Li G, Qiu X, Zhang W, Song SW (2009) Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro-Oncology 11:468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Eggler AL, Dietz BM, Mesecar AD, Bolton JL, Pezzuto JM, van Breemen RB (2005) Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Anal Chem 77:6407–6414

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Yin H, Qian X, Dong J, Qian Z, Miao J (2016) Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules 22. https://doi.org/10.3390/molecules22010036

  • Logan IE, Miranda CL, Lowry MB, Maier CS, Stevens JF, Gombart AF (2019) Antiproliferative and cytotoxic activity of xanthohumol and its non-estrogenic derivatives in colon and hepatocellular carcinoma cell lines. Int J Mol Sci 20. https://doi.org/10.3390/ijms20051203

  • Luo Y, Eggler AL, Liu D, Liu G, Mesecar AD, van Breemen RB (2007) Sites of alkylation of human Keap1 by natural chemoprevention agents. J Am Soc Mass Spectrom 18:2226–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lust S, Vanhoecke B, Janssens A, Philippe J, Bracke M, Offner F (2005) Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol Nutr Food Res 49:844–850

    Article  CAS  PubMed  Google Scholar 

  • Lust S, Vanhoecke B, VAN Gele M, Boelens J, VAN Melckebeke H, Kaileh M, Vanden Berghe W, Haegeman G, Philippé J, Bracke M, Offner F (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res 29:3797–3805

    CAS  PubMed  Google Scholar 

  • Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X (2017) Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol 12:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maemura K, Natsugoe S, Takao S (2014) Molecular mechanism of cholangiocarcinoma carcinogenesis. J Hepatobiliary Pancreat Sci 21:754–760

    Article  PubMed  Google Scholar 

  • Maruyama S, Fujimoto N, Asano K, Ito A, Usui T (2000) Expression of estrogen receptor alpha and beta mRNAs in prostate cancers treated with leuprorelin acetate. Eur Urol 38:635–639

    Article  CAS  PubMed  Google Scholar 

  • Mi X, Wang C, Sun C, Chen X, Huo X, Zhang Y, Li G, Xu B, Zhang J, Xie J, Wang Z, Li J (2017) Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget 8:31297–31304

    Article  PubMed  PubMed Central  Google Scholar 

  • Milligan SR, Kalita JC, Heyerick A, Rong H, De Cooman L, De Keukeleire D (1999) Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab 84:2249–2252

    Article  CAS  PubMed  Google Scholar 

  • Milligan SR, Kalita JC, Pocock V, Van De Kauter V, Stevens JF, Deinzer ML, Rong H, De Keukeleire D (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab 85:4912–4915

    Article  CAS  PubMed  Google Scholar 

  • Milligan S, Kalita J, Pocock V, Heyerick A, De Cooman L, Rong H, De Keukeleire D (2002) Oestrogenic activity of the hop phytoestrogen, 8-prenylnaringenin. Reproduction 123:235–242

    Article  CAS  PubMed  Google Scholar 

  • Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37:271–285

    Article  CAS  PubMed  Google Scholar 

  • Miranda CL, Aponso GL, Stevens JF, Deinzer ML, Buhler DR (2000a) Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett 149:21–29

    Article  CAS  PubMed  Google Scholar 

  • Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer ML, Buhler DR (2000b) Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J Agric Food Chem 48:3876–3884

    Article  CAS  PubMed  Google Scholar 

  • Miranda CL, Yang YH, Henderson MC, Stevens JF, Santana-Rios G, Deinzer ML, Buhler DR (2000c) Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4, 5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab Dispos 28:1297–1302

    CAS  PubMed  Google Scholar 

  • Miranda CL, Johnson LA, de Montgolfier O, Elias VD, Ullrich LS, Hay JJ, Paraiso IL, Choi J, Reed RL, Revel JS, Kioussi C, Bobe G, Iwaniec UT, Turner RT, Katzenellenbogen BS, Katzenellenbogen JA, Blakemore PR, Gombart AF, Maier CS, Raber J, Stevens JF (2018) Non-estrogenic xanthohumol derivatives mitigate insulin resistance and cognitive impairment in high-fat diet-induced obese mice. Sci Rep 8:613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monteghirfo S, Tosetti F, Ambrosini C, Stigliani S, Pozzi S, Frassoni F, Fassina G, Soverini S, Albini A, Ferrari N (2008) Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol Cancer Ther 7:2692–2702

    Article  CAS  PubMed  Google Scholar 

  • Monteiro R, Becker H, Azevedo I, Calhau C (2006) Effect of hop (Humulus lupulus L.) flavonoids on aromatase (estrogen synthase) activity. J Agric Food Chem 54:2938–2943

    Article  CAS  PubMed  Google Scholar 

  • Monteiro R, Faria A, Azevedo I, Calhau C (2007) Modulation of breast cancer cell survival by aromatase inhibiting hop (Humulus lupulus L.) flavonoids. J Steroid Biochem Mol Biol 105:124–130

    Article  CAS  PubMed  Google Scholar 

  • Moparthi L, Koch S (2019) Wnt signaling in intestinal inflammation. Differentiation 108:24–32

    Article  CAS  PubMed  Google Scholar 

  • Negrão R, Duarte D, Costa R, Soares R (2013) Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. Biofactors 39:608–622

    Article  PubMed  CAS  Google Scholar 

  • Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129

    Article  CAS  PubMed  Google Scholar 

  • Niit M, Hoskin V, Carefoot E, Geletu M, Arulanandam R, Elliott B, Raptis L (2015) Cell-cell and cell-matrix adhesion in survival and metastasis: Stat3 versus Akt. Biomol Concepts 6:383–399

    Article  CAS  PubMed  Google Scholar 

  • Nuti E, Bassani B, Camodeca C, Rosalia L, Cantelmo A, Gallo C, Baci D, Bruno A, Orlandini E, Nencetti S, Noonan DM, Albini A, Rossello A (2017) Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. Eur J Med Chem 138:890–899

    Article  CAS  PubMed  Google Scholar 

  • Ott PA, Bhardwaj N (2013) Impact of MAPK pathway activation in BRAF(V600) melanoma on T cell and dendritic cell function. Front Immunol 4:346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan L, Becker H, Gerhäuser C (2005) Xanthohumol induces apoptosis in cultured 40–16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol Nutr Food Res 49:837–843

    Article  CAS  PubMed  Google Scholar 

  • Paraiso IL, Plagmann LS, Yang L, Zielke R, Gombart AF, Maier CS, Sikora AE, Blakemore PR, Stevens JF (2018) Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus. Mol Nutr Food Res 63(2):e1800923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peluso MR, Miranda CL, Hobbs DJ, Proteau RR, Stevens JF (2010) Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med 76:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Pichler C, Ferk F, Al-Serori H, Huber W, Jäger W, Waldherr M, Mišík M, Kundi M, Nersesyan A, Herbacek I, Knasmueller S (2017) Xanthohumol prevents DNA damage by dietary carcinogens: results of a human intervention trial. Cancer Prev Res (Phila) 10:153–160

    Article  CAS  Google Scholar 

  • Pinto C, Duque AL, Rodríguez-Galdón B, Cestero JJ, Macías P (2012) Xanthohumol prevents carbon tetrachloride-induced acute liver injury in rats. Food Chem Toxicol 50:3405–3412

    Article  CAS  PubMed  Google Scholar 

  • Plazar J, Zegura B, Lah TT, Filipic M (2007) Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat Res 632:1–8

    Article  CAS  PubMed  Google Scholar 

  • Plazar J, Filipic M, Groothuis GM (2008) Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicol in Vitro 22:318–327

    Article  CAS  PubMed  Google Scholar 

  • Popłoński J, Turlej E, Sordon S, Tronina T, Bartmańska A, Wietrzyk J, Huszcza E (2018) Synthesis and antiproliferative activity of minor hops prenylflavonoids and new insights on prenyl group cyclization. Molecules 23

    Google Scholar 

  • Possemiers S, Heyerick A, Robbens V, De Keukeleire D, Verstraete W (2005) Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J Agric Food Chem 53:6281–6288

    Article  CAS  PubMed  Google Scholar 

  • Possemiers S, Bolca S, Grootaert C, Heyerick A, Decroos K, Dhooge W, De Keukeleire D, Rabot S, Verstraete W, Van de Wiele T (2006) The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 136:1862–1867

    Article  CAS  PubMed  Google Scholar 

  • Possemiers S, Rabot S, Espin JC, Bruneau A, Philippe C, Gonzalez-Sarrias A, Heyerick A, Tomas-Barberan FA, De Keukeleire D, Verstraete W (2008) Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 138:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Quintas-Cardama A, Kantarjian H, Jones D, Nicaise C, O’Brien S, Giles F, Talpaz M, Cortes J (2007) Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (AMN107) therapy failure. Blood 109:497–499

    Article  CAS  PubMed  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Matsuo Y, Imafuji H, Okubo T, Maeda Y, Sato T, Shamoto T, Tsuboi K, Morimoto M, Takahashi H, Ishiguro H, Takiguchi S (2018) Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci 109:132–140

    Article  CAS  PubMed  Google Scholar 

  • Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasazawa Y, Kanagaki S, Tashiro E, Nogawa T, Muroi M, Kondoh Y, Osada H, Imoto M (2012) Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem Biol 7:892–900

    Article  CAS  PubMed  Google Scholar 

  • Sastre-Serra J, Ahmiane Y, Roca P, Oliver J, Pons DG (2018) Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int J Food Sci Nutr 70(4):396–404

    Article  PubMed  CAS  Google Scholar 

  • Schempp H, Vogel S, Hückelhoven R, Heilmann J (2010) Re-evaluation of superoxide scavenging capacity of xanthohumol. Free Radic Res 44:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Shikata Y, Yoshimaru T, Komatsu M, Katoh H, Sato R, Kanagaki S, Okazaki Y, Toyokuni S, Tashiro E, Ishikawa S, Katagiri T, Imoto M (2017) Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci 108:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D (2017) Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 179:158–170

    Article  CAS  PubMed  Google Scholar 

  • Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, Bredesen DE (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075

    Article  CAS  PubMed  Google Scholar 

  • Sripa B, Pairojkul C (2008) Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24:349–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65:1317–1330

    Article  CAS  PubMed  Google Scholar 

  • Stevens JF, Taylor AW, Clawson JE, Deinzer ML (1999a) Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem 47:2421–2428

    Article  CAS  PubMed  Google Scholar 

  • Stevens JF, Taylor AW, Deinzer ML (1999b) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A 832:97–107

    Article  CAS  PubMed  Google Scholar 

  • Stevens JF, Revel JS, Maier CS (2018) Mitochondria-centric review of polyphenol bioactivity in cancer models. Antioxid Redox Signal 29(16):1589–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stompor M, Uram Ł, Podgórski R (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22. https://doi.org/10.3390/molecules22071092

  • Strathmann J, Klimo K, Sauer SW, Okun JG, Prehn JH, Gerhauser C (2010) Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J 24:2938–2950

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto MA, Vago JP, Teixeira MM, Sousa LP (2016) Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res 2016:8239258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma L, Liu Q, Du Y, Yang J, Wang Q (2018) Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway. Oncol Lett 15:908–916

    PubMed  Google Scholar 

  • Szliszka E, Czuba ZP, Mazur B, Sedek L, Paradysz A, Krol W (2009) Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int J Mol Sci 11:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan KW, Cooney J, Jensen D, Li Y, Paxton JW, Birch NP, Scheepens A (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol Nutr Food Res 58:2099–2110

    Article  CAS  PubMed  Google Scholar 

  • Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tronina T, Bartmańska A, Filip-Psurska B, Wietrzyk J, Popłoński J, Huszcza E (2013a) Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg Med Chem 21:2001–2006

    Article  CAS  PubMed  Google Scholar 

  • Tronina T, Bartmańska A, Milczarek M, Wietrzyk J, Popłoński J, Rój E, Huszcza E (2013b) Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg Med Chem Lett 23:1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Urick ME, Chung EJ, Shield WP, Gerber N, White A, Sowers A, Thetford A, Camphausen K, Mitchell J, Citrin DE (2011) Enhancement of 5-fluorouracil-induced in vitro and in vivo radiosensitization with MEK inhibition. Clin Cancer Res 17:5038–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117:889–895

    Article  CAS  PubMed  Google Scholar 

  • Venè R, Benelli R, Minghelli S, Astigiano S, Tosetti F, Ferrari N (2012) Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol Med 18:1292–1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venturelli S, Burkard M, Biendl M, Lauer UM, Frank J, Busch C (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Verzele M (1986) 100 Years of hop chemistry and its relevance to brewing. J Inst Brew 92:32–48

    Article  CAS  Google Scholar 

  • Viola K, Kopf S, Rarova L, Jarukamjorn K, Kretschy N, Teichmann M, Vonach C, Atanasov AG, Giessrigl B, Huttary N, Raab I, Krieger S, Strnad M, de Martin R, Saiko P, Szekeres T, Knasmüller S, Dirsch VM, Jäger W, Grusch M, Dolznig H, Mikulits W, Krupitza G (2013) Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch Toxicol 87:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

    Article  CAS  PubMed  Google Scholar 

  • Walden D, Kunnimalaiyaan S, Sokolowski K, Clark TG, Kunnimalaiyaan M (2017) Antiproliferative and apoptotic effects of xanthohumol in cholangiocarcinoma. Oncotarget 8:88069–88078

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen Y, Wang J, Chen J, Aggarwal BB, Pang X, Liu M (2012) Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr Mol Med 12:153–162

    Article  CAS  PubMed  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    Article  CAS  PubMed  Google Scholar 

  • Willson CM, Grundmann O (2017) In vitro assays in natural products research – a matter of concentration and relevance to in vivo administration using resveratrol, α-mangostin/γ-mangostin and xanthohumol as examples. Nat Prod Res 31:492–506

    Article  CAS  PubMed  Google Scholar 

  • Wyns C, van Steendam K, Vanhoecke B, Deforce D, Bracke M, Heyerick A (2012) Prenylated chalcone xanthohumol associates with histones in breast cancer cells – a novel target identified by a monoclonal antibody. Mol Nutr Food Res 56:1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Zhang B, Ge C, Peng S, Fang J (2015) Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. J Agric Food Chem 63:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Yau SW, Azar WJ, Sabin MA, Werther GA, Russo VC (2015) IGFBP-2 - taking the lead in growth, metabolism and cancer. J Cell Commun Signal 9:125–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Yong WK, Abd Malek SN (2015) Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid Based Complement Alternat Med 2015:921306

    Article  PubMed  PubMed Central  Google Scholar 

  • Yong WK, Ho YF, Malek SN (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag 11:S275–S283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshimaru T, Komatsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa M, Katagiri T (2014) Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions. Sci Rep 4:7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc I, Filipič M, Lah TT (2012) Xanthohumol induces different cytotoxicity and apoptotic pathways in malignant and normal astrocytes. Phytother Res 26:1709–1713

    Article  CAS  PubMed  Google Scholar 

  • Zenisek A, Bednar IJ (1960) Contribution to the identification of estrogen activity in hops. Am Perfumer Arom 75:61–62

    CAS  Google Scholar 

  • Zhang W, Pan Y, Gou P, Zhou C, Ma L, Liu Q, Du Y, Yang J, Wang Q (2018) Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol Rep 39:280–288

    CAS  PubMed  Google Scholar 

  • Zhao X, Jiang K, Liang B, Huang X (2016) Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep 35:669–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author receives support for research on xanthohumol from the National Institutes of Health (NIH Grants R01AT009168 and R01AT010271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan F. Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, J.F. (2020). Xanthohumol and Structurally Related Prenylflavonoids for Cancer Chemoprevention and Control. In: Pezzuto, J., Vang, O. (eds) Natural Products for Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-030-39855-2_10

Download citation

Publish with us

Policies and ethics