Skip to main content

Productivity: Cells

  • Chapter
  • First Online:
Bone Cement

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 294 Accesses

Abstract

In tissue engineering, besides osteoconductivity and osteoinductivity, the ability to regenerate tissue should also be considered. To this aim, many kinds of cells have been investigated to seed on scaffolds. Bone tissue is a habitat of various kinds of the cells dividing into two main categories: stem cell niches and resident cells in bone. The latter includes osteoblasts, osteoclasts, osteocytes, and osteoprogenitor cells. According to these cells, four classes of the stem cells and their derivations have been selected to be used in the bone tissue engineering. The classes discussed in this chapter are as follows: embryonic stem cells, induced pluripotent stem cells, fetal stem cells, and adult stem cells. Besides the kinds of cells, the methods for seeding the cells and the reactors for enhancement of the cell activities are also important, which are explained at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Shinsuke, Y. Fumiko, C. Ung-il, Tissue engineering of bone and cartilage. IBMS Bonekey. 6, 405–419 (2009)

    Article  Google Scholar 

  2. A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40, 363–408 (2012). https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

    Article  Google Scholar 

  3. I. Drosse, E. Volkmer, R. Capanna, P. De Biase, W. Mutschler, M. Schieker, Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39, S9–S20 (2008). https://doi.org/10.1016/S0020-1383(08)70011-1

    Article  Google Scholar 

  4. P.G. Robey, Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng. Part B Rev. 17, 423–430 (2011). https://doi.org/10.1089/ten.teb.2011.0199

    Article  Google Scholar 

  5. T. Yin, L. Li, The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006). https://doi.org/10.1172/JCI28568

    Article  Google Scholar 

  6. D. Lopes, C. Martins-Cruz, M.B. Oliveira, J.F. Mano, Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 185, 240–275 (2018). https://doi.org/10.1016/j.biomaterials.2018.09.028

    Article  Google Scholar 

  7. R. Nerem, A. Atala, R. Lanza, T. Mikos, Stem cells derived from amniotic fluid and placenta, in Principles of Regenerative Medicine (Academic Press, London, 2008), p. 1472

    Google Scholar 

  8. R. Florencio-Silva, G.R.D.S. Sasso, E. Sasso-Cerri, M.J. Simões, P.S. Cerri, Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 1–17 (2015). https://doi.org/10.1155/2015/421746

    Article  Google Scholar 

  9. M. Capulli, R. Paone, N. Rucci, Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 561, 3–12 (2014). https://doi.org/10.1016/j.abb.2014.05.003

    Article  Google Scholar 

  10. K.A. Young, J.A. Wise, P. DeSaix, D.H. Kruse, B. Poe, E. Johnson, J.E. Johnson, O. Korol, J.G. Betts, M. Womble, Anatomy and Physiology, 1st edn. (Houston, Texas, USA, 2013)

    Google Scholar 

  11. B. Clarke, Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3, S131–S139 (2008). https://doi.org/10.2215/CJN.04151206

    Article  Google Scholar 

  12. K. Matsuo, Cross-talk among bone cells. Curr. Opin. Nephrol. Hypertens. 18, 292–297 (2009). https://doi.org/10.1097/MNH.0b013e32832b75f1

    Article  Google Scholar 

  13. F. Martini, J.L. Nath, E.F. Bartholomew, Fundamentals of Anatomy & Physiology (Essex, England, 2015)

    Google Scholar 

  14. M. Tang, W. Chen, M.D. Weir, W. Thein-Han, H.H.K. Xu, Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater. 8, 3436–3445 (2012). https://doi.org/10.1016/j.actbio.2012.05.016

    Article  Google Scholar 

  15. M. Meregalli, A. Farini, Y. Torrente, Stem cell therapy for neuromuscular diseases, in Stem Cells in Clinic and Research (InTech, 2011). https://doi.org/10.5772/24013

    Google Scholar 

  16. S. Kargozar, M. Mozafari, S. Hamzehlou, P. Brouki Milan, H.-W. Kim, F. Baino, Bone tissue engineering using human cells: a comprehensive review on recent trends, current prospects, and recommendations. Appl. Sci. 9, 174 (2019). https://doi.org/10.3390/app9010174

    Article  ADS  Google Scholar 

  17. A.-M. Yousefi, P.F. James, R. Akbarzadeh, A. Subramanian, C. Flavin, H. Oudadesse, Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int. 2016, 1–13 (2016). https://doi.org/10.1155/2016/6180487

    Article  Google Scholar 

  18. W. Chen, H. Zhou, M.D. Weir, M. Tang, C. Bao, H.H.K. Xu, Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair. Tissue Eng. Part A 19, 915–927 (2013). https://doi.org/10.1089/ten.tea.2012.0172

    Article  Google Scholar 

  19. X. Liu, P. Wang, W. Chen, M.D. Weir, C. Bao, H.H.K. Xu, Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomater. 10, 4484–4493 (2014). https://doi.org/10.1016/j.actbio.2014.06.027

    Article  Google Scholar 

  20. L. Wang, P. Wang, M.D. Weir, M.A. Reynolds, L. Zhao, H.H.K. Xu, Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Biomed. Mater. 11, 065008 (2016). https://doi.org/10.1088/1748-6041/11/6/065008

    Article  ADS  Google Scholar 

  21. Y. Lin, S. Huang, R. Zou, X. Gao, J. Ruan, M.D. Weir, M.A. Reynolds, W. Qin, X. Chang, H. Fu, H.H.K. Xu, Calcium phosphate cement scaffold with stem cell co-culture and prevascularization for dental and craniofacial bone tissue engineering. Dent. Mater. 35, 1031–1041 (2019). https://doi.org/10.1016/j.dental.2019.04.009

    Article  Google Scholar 

  22. S. Yamanaka, H.M. Blau, Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010). https://doi.org/10.1038/nature09229

    Article  ADS  Google Scholar 

  23. J. Liu, W. Chen, Z. Zhao, H.H.K. Xu, Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 34, 7862–7872 (2013). https://doi.org/10.1016/j.biomaterials.2013.07.029

    Article  Google Scholar 

  24. M. Tang, W. Chen, J. Liu, M.D. Weir, L. Cheng, H.H.K. Xu, Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Eng. Part A 20, 1295–1305 (2014). https://doi.org/10.1089/ten.tea.2013.0211

    Article  Google Scholar 

  25. W. TheinHan, J. Liu, M. Tang, W. Chen, L. Cheng, H.H.K. Xu, Induced pluripotent stem cell-derived mesenchymal stem cell seeding on biofunctionalized calcium phosphate cements. Bone Res. 1, 371–384 (2013). https://doi.org/10.4248/BR201304008

    Article  Google Scholar 

  26. P. Wang, X. Liu, L. Zhao, M.D. Weir, J. Sun, W. Chen, Y. Man, H.H.K. Xu, Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater. 18, 236–248 (2015). https://doi.org/10.1016/j.actbio.2015.02.011

    Article  Google Scholar 

  27. M. Sladkova, M. Palmer, C. Öhman, R.J. Alhaddad, A. Esmael, H. Engqvist, G.M. de Peppo, Fabrication of macroporous cement scaffolds using PEG particles: in vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors. Mater. Sci. Eng., C 69, 640–652 (2016). https://doi.org/10.1016/j.msec.2016.06.075

    Article  Google Scholar 

  28. M. Sladkova, M. Palmer, C. Öhman, J. Cheng, S. Al-Ansari, M. Saad, H. Engqvist, G.M. de Peppo, Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds. J. Tissue Eng. Regen. Med. 12, 715–726 (2018). https://doi.org/10.1002/term.2491

    Article  Google Scholar 

  29. X. Liu, W. Chen, C. Zhang, W. Thein-Han, K. Hu, M.A. Reynolds, C. Bao, P. Wang, L. Zhao, H.H.K. Xu, Co-seeding human endothelial cells with human-induced pluripotent stem cell-derived mesenchymal stem cells on calcium phosphate scaffold enhances osteogenesis and vascularization in rats. Tissue Eng. Part A 23, 546–555 (2017). https://doi.org/10.1089/ten.tea.2016.0485

    Article  Google Scholar 

  30. R.P. Dorin, C.J. Koh, Fetal tissues, in Principles of Regenerative Medicine (Elsevier, 2011), pp. 819–832. https://doi.org/10.1016/b978-0-12-381422-7.10045-8

    Chapter  Google Scholar 

  31. C. Molnar, J. Gair, Human pregnancy and birth, in Concepts of Biology, 1st edn. (Houston, Texas, USA, 2013)

    Google Scholar 

  32. A.J. Wagers, I.L. Weissman, Plasticity of adult stem cells. Cell 116, 639–648 (2004). https://doi.org/10.1016/S0092-8674(04)00208-9

    Article  Google Scholar 

  33. A.H. Undale, J.J. Westendorf, M.J. Yaszemski, S. Khosla, Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 84, 893–902 (2009). https://doi.org/10.4065/84.10.893

    Article  Google Scholar 

  34. H. Xia, X. Li, W. Gao, X. Fu, R.H. Fang, L. Zhang, K. Zhang, Tissue repair and regeneration with endogenous stem cells. Nat. Rev. Mater. 3, 174–193 (2018). https://doi.org/10.1038/s41578-018-0027-6

    Article  ADS  Google Scholar 

  35. A. Uccelli, L. Moretta, V. Pistoia, Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008). https://doi.org/10.1038/nri2395

    Article  Google Scholar 

  36. M.D. Weir, H.H.K. Xu, Culture human mesenchymal stem cells with calcium phosphate cement scaffolds for bone repair, J. Biomed. Mater. Res. Part B Appl. Biomater. 93B, 93–105 (2010). https://doi.org/10.1002/jbm.b.31563

    Article  Google Scholar 

  37. M.D. Weir, H.H.K. Xu, Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater. 6, 4118–4126 (2010). https://doi.org/10.1016/j.actbio.2010.04.029

    Article  Google Scholar 

  38. T. Liu, J. Li, Z. Shao, K. Ma, Z. Zhang, B. Wang, Y. Zhang, Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 56, 9–15 (2018). https://doi.org/10.1016/j.medengphy.2018.03.003

    Article  Google Scholar 

  39. W. Chen, J. Liu, N. Manuchehrabadi, M.D. Weir, Z. Zhu, H.H.K. Xu, Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials 34, 9917–9925 (2013). https://doi.org/10.1016/j.biomaterials.2013.09.002

    Article  Google Scholar 

  40. G. Qiu, Z. Shi, H.H.K. Xu, B. Yang, M.D. Weir, G. Li, Y. Song, J. Wang, K. Hu, P. Wang, L. Zhao, Bone regeneration in minipigs via calcium phosphate cement scaffold delivering autologous bone marrow mesenchymal stem cells and platelet-rich plasma. J. Tissue Eng. Regen. Med. 12, e937–e948 (2018). https://doi.org/10.1002/term.2416

    Article  Google Scholar 

  41. J. Pak, J.H. Lee, K.S. Park, M. Park, L.-W. Kang, S.H. Lee, Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. J. Biomed. Sci. 24, 9 (2017). https://doi.org/10.1186/s12929-017-0318-z

    Article  Google Scholar 

  42. S. Kern, H. Eichler, J. Stoeve, H. Klüter, K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301 (2006). https://doi.org/10.1634/stemcells.2005-0342

    Article  Google Scholar 

  43. Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, Z. Cui, Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26, 664–675 (2008). https://doi.org/10.1002/cbf.1488

    Article  Google Scholar 

  44. Y. Alabdulkarim, B. Ghalimah, M. Al-Otaibi, H. Al-Jallad, M. Mekhael, B. Willie, R. Hamdy, Recent advances in bone regeneration: the role of adipose tissue-derived stromal vascular fraction and mesenchymal stem cells. J. Limb Lengthening Reconstr. 3, 4 (2017). https://doi.org/10.4103/jllr.jllr_1_17

    Article  Google Scholar 

  45. R.T. Qomi, M. Sheykhhasan, Adipose-derived stromal cell in regenerative medicine: a review. World J. Stem Cells 9, 107 (2017). https://doi.org/10.4252/wjsc.v9.i8.107

    Article  Google Scholar 

  46. L. Shukla, W.A. Morrison, R. Shayan, Adipose-derived stem cells in radiotherapy injury: a new frontier. Front. Surg. 2 (2015). https://doi.org/10.3389/fsurg.2015.00001

  47. J.T. Walker, A. Keating, J.E. Davies, Stem cells: umbilical cord/Wharton’s jelly derived, in Cell Engineering and Regeneration (Springer International Publishing, Cham, 2019), pp. 1–28. https://doi.org/10.1007/978-3-319-37076-7_10-1

    Google Scholar 

  48. D.-C. Ding, Y.-H. Chang, W.-C. Shyu, S.-Z. Lin, Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 24, 339–347 (2015). https://doi.org/10.3727/096368915X686841

    Article  Google Scholar 

  49. T. Nagamura-Inoue, Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J. Stem Cells. 6, 195 (2014). https://doi.org/10.4252/wjsc.v6.i2.195

    Article  Google Scholar 

  50. H. Zhou, M.D. Weir, H.H.K. Xu, Effect of cell seeding density on proliferation and osteodifferentiation of umbilical cord stem cells on calcium phosphate cement-fiber scaffold. Tissue Eng. Part A 17, 2603–2613 (2011). https://doi.org/10.1089/ten.tea.2011.0048

    Article  Google Scholar 

  51. C. Bao, W. Chen, M.D. Weir, W. Thein-Han, H.H.K. Xu, Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Acta Biomater. 7, 4037–4044 (2011). https://doi.org/10.1016/j.actbio.2011.06.046

    Article  Google Scholar 

  52. W. Chen, H. Zhou, M. Tang, M.D. Weir, C. Bao, H.H.K. Xu, Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng. Part A 18, 816–827 (2012). https://doi.org/10.1089/ten.tea.2011.0267

    Article  Google Scholar 

  53. W. Chen, H. Zhou, M.D. Weir, C. Bao, H.H.K. Xu, Umbilical cord stem cells released from alginate–fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 8, 2297–2306 (2012). https://doi.org/10.1016/j.actbio.2012.02.021

    Article  Google Scholar 

  54. W. Thein-Han, H.H.K. Xu, Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng. Part A 17, 2943–2954 (2011). https://doi.org/10.1089/ten.tea.2010.0674

    Article  Google Scholar 

  55. G.T.-J. Huang, S. Gronthos, S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res. 88, 792–806 (2009). https://doi.org/10.1177/0022034509340867

    Article  Google Scholar 

  56. H. Egusa, W. Sonoyama, M. Nishimura, I. Atsuta, K. Akiyama, Stem cells in dentistry—Part I: stem cell sources. J. Prosthodont. Res. 56, 151–165 (2012). https://doi.org/10.1016/j.jpor.2012.06.001

    Article  Google Scholar 

  57. M.B. Eslaminejad, S. Bordbar, H. Nazarian, Odontogenic differentiation of dental pulp-derived stem cells on tricalcium phosphate scaffolds. J. Dent. Sci. 8, 306–313 (2013). https://doi.org/10.1016/j.jds.2013.03.005

    Article  Google Scholar 

  58. W. Qin, J.-Y. Chen, J. Guo, T. Ma, M.D. Weir, D. Guo, Y. Shu, Z.-M. Lin, A. Schneider, H.H.K. Xu, Novel calcium phosphate cement with metformin-loaded chitosan for odontogenic differentiation of human dental pulp cells. Stem Cells Int. 2018, 1–10 (2018). https://doi.org/10.1155/2018/7173481

    Article  Google Scholar 

  59. C. Ferretti, Periosteum derived stem cells for regenerative medicine proposals: boosting current knowledge. World J. Stem Cells. 6, 266 (2014). https://doi.org/10.4252/wjsc.v6.i3.266

    Article  Google Scholar 

  60. J. Fan, R.R. Varshney, L. Ren, D. Cai, D.-A. Wang, Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng. Part B Rev. 15, 75–86 (2009). https://doi.org/10.1089/ten.teb.2008.0586

    Article  Google Scholar 

  61. D. McGonagle, T.G. Baboolal, E. Jones, Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 13, 719–730 (2017). https://doi.org/10.1038/nrrheum.2017.182

    Article  Google Scholar 

  62. A. Usas, J. Huard, Muscle-derived stem cells for tissue engineering and regenerative therapy 28, 5401–5406 (2007)

    Google Scholar 

  63. E.J. Mackie, Osteoblasts: novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 35, 1301–1305 (2003). https://doi.org/10.1016/S1357-2725(03)00107-9

    Article  Google Scholar 

  64. P. Jayakumar, L. Di Silvio, Osteoblasts in bone tissue engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 1415–1440 (2010). https://doi.org/10.1243/09544119jeim821

    Article  Google Scholar 

  65. D. Han, Q. Zhang, An essential requirement for osteoclasts in refined bone-like tissue reconstruction in vitro. Med. Hypotheses 67, 75–78 (2006). https://doi.org/10.1016/j.mehy.2006.01.014

    Article  Google Scholar 

  66. M.S. Rahman, N. Akhtar, H.M. Jamil, R.S. Banik, S.M. Asaduzzaman, TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 3, 15005 (2015). https://doi.org/10.1038/boneres.2015.5

    Article  Google Scholar 

  67. S. Midha, W. van den Bergh, T.B. Kim, P.D. Lee, J.R. Jones, C.A. Mitchell, Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv. Healthc. Mater. 2, 490–499 (2013). https://doi.org/10.1002/adhm.201200140

    Article  Google Scholar 

  68. M. Baghaban, F. Faghihi, Mesenchymal stem cell-based bone engineering for bone regeneration, in Regenerative Medicine and Tissue Engineering—Cells and Biomaterials (InTech, 2011). https://doi.org/10.5772/21017

    Google Scholar 

  69. J. Lott, P.H. de Carvalho, D. Assis, A.M. de Goes, Innovative strategies for tissue engineering, in Advances in Biomaterials Science and Biomedical Applications (InTech, 2013). https://doi.org/10.5772/53337

    Google Scholar 

  70. D.W. Hutmacher, H. Singh, Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. 26, 166–172 (2008). https://doi.org/10.1016/j.tibtech.2007.11.012

    Article  Google Scholar 

  71. M. Sladkova, G. de Peppo, Bioreactor systems for human bone tissue engineering. Processes 2, 494–525 (2014). https://doi.org/10.3390/pr2020494

    Article  Google Scholar 

  72. I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004). https://doi.org/10.1016/j.tibtech.2003.12.001

    Article  Google Scholar 

  73. K.J. Blose, J.T. Krawiec, J.S. Weinbaum, D.A. Vorp, Bioreactors for tissue engineering purposes, in Regenerative Medicine Applications in Organ Transplantation (Elsevier, 2014), pp. 177–185. https://doi.org/10.1016/b978-0-12-398523-1.00013-6

    Chapter  Google Scholar 

  74. N. Plunkett, F.J. O’Brien, IV.3. Bioreactors in tissue engineering. Stud. Health Technol. Inform. 152, 214–230 (2010)

    Google Scholar 

  75. N. Wung, S.M. Acott, D. Tosh, M.J. Ellis, Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol. Lett. 36, 2357–2366 (2014). https://doi.org/10.1007/s10529-014-1619-x

    Article  Google Scholar 

  76. D.A. Gaspar, V. Gomide, F.J. Monteiro, The role of perfusion bioreactors in bone tissue engineering. Biomatter 2, 167–175 (2012). https://doi.org/10.4161/biom.22170

    Article  Google Scholar 

  77. A.J. El Haj, S.H. Cartmell, Bioreactors for bone tissue engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 1523–1532 (2010). https://doi.org/10.1243/09544119jeim802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Rezaie, H., Esnaashary, M., Karfarma, M., Öchsner, A. (2020). Productivity: Cells. In: Bone Cement. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-39716-6_3

Download citation

Publish with us

Policies and ethics