Skip to main content

Conductivity: Materials Design

  • Chapter
  • First Online:
Bone Cement

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 311 Accesses

Abstract

Natural bone tissue constructs from various components and structural features. To produce a bone substitution that can conduct and induce bone growth on its structure and gradually replace the substitution with newly grown tissue, the composition and structure of the substitution should be mimic the natural tissue components. In this order, composition and porous structure of bone have been considered in the synthesis of bone cement. In this chapter, at first structural and compositional features of bone tissue are evaluated. Moreover, based on this knowledge, selecting the bone cement composition and applying scaffold production method on them are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Nakamura, M. Takemoto, Osteoconduction and its evaluation, in Bioceramics and Their Clinical Applications, ed. by T. Kokubo (CRC Press, Cambridge, 2008), pp. 183–198

    Chapter  Google Scholar 

  2. M.M. Stevens, Biomaterials for bone tissue engineering. Mater. Today 11, 18–25 (2008). https://doi.org/10.1016/S1369-7021(08)70086-5

    Article  Google Scholar 

  3. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089

    Article  ADS  Google Scholar 

  4. A. Shekaran, A.J. García, Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res.—Part A 96(1), 261–272 (2011). https://doi.org/10.1002/jbm.a.32979

    Article  Google Scholar 

  5. R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th edn. (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  6. G. Karp, Cell and Molecular Biology: Concepts and Experiments, 7th edn. (Wiley, Danvers, 2013)

    Google Scholar 

  7. R. Vaishya, M. Chauhan, A. Vaish, Bone cement. J. Clin. Orthop. Trauma 4, 157–163 (2013). https://doi.org/10.1016/j.jcot.2013.11.005

    Article  Google Scholar 

  8. C. Duval-Terrié, L. Lebrun, Polymerization and characterization of PMMA. Polymer chemistry laboratory experiments for undergraduate students. J. Chem. Educ. 83, 443 (2006). https://doi.org/10.1021/ed083p443

    Article  ADS  Google Scholar 

  9. J. Hasenwinkel, Bone cement, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.L. Bowlin (Informa Healthcare, New YorK, 2008), pp. 403–412

    Google Scholar 

  10. G. Lewis, Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38, 155–182 (1997). https://doi.org/10.1002/(SICI)1097-4636(199722)38:2%3c155:AID-JBM10%3e3.0.CO;2-C

    Article  Google Scholar 

  11. L. Hernández, M. Gurruchaga, I. Goñi, Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J. Mater. Sci. Mater. Med. 20, 89–97 (2009). https://doi.org/10.1007/s10856-008-3542-y

    Article  Google Scholar 

  12. Y. Wang, Y. Xiao, X. Huang, M. Lang, Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J. Colloid Interface Sci. 360, 415–421 (2011). https://doi.org/10.1016/j.jcis.2011.04.093

    Article  ADS  Google Scholar 

  13. L. Chen, D. Zhai, Z. Huan, N. Ma, H. Zhu, C. Wu, J. Chang, Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC Adv. 5, 37314–37322 (2015). https://doi.org/10.1039/C5RA04646G

    Article  Google Scholar 

  14. B. Marrs, R. Andrews, T. Rantell, D. Pienkowski, Augmentation of acrylic bone cement with multiwall carbon nanotubes. J. Biomed. Mater. Res., Part A 77A, 269–276 (2006). https://doi.org/10.1002/jbm.a.30651

    Article  Google Scholar 

  15. K. Król, K. Pielichowska, Modification of acrylic bone cements by poly(ethylene glycol) with different molecular weight. Polym. Adv. Technol. 27, 1284–1293 (2016). https://doi.org/10.1002/pat.3792

    Article  Google Scholar 

  16. Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J. Orthop. Transl. 3, 1–11 (2015). https://doi.org/10.1016/j.jot.2014.11.002

    Article  Google Scholar 

  17. M. Salarian, W.Z. Xu, M.C. Biesinger, P.A. Charpentier, Synthesis and characterization of novel TiO 2 -poly(propylene fumarate) nanocomposites for bone cementation. J. Mater. Chem. B 2, 5145–5156 (2014). https://doi.org/10.1039/C4TB00715H

    Article  Google Scholar 

  18. E.L.S. Fong, B.M. Watson, F.K. Kasper, A.G. Mikos, Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Adv. Mater. 24, 4995–5013 (2012). https://doi.org/10.1002/adma.201201762

    Article  Google Scholar 

  19. S.J. Peter, P. Kim, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 44, 314–321 (1999)

    Article  Google Scholar 

  20. N.S. Anitha, V. Thomas, M. Jayabalan, Poly(propylene fumarate)ln-vinyl pyrrolidone copolymer-based bone cement: setting and in-vitro biodegradation. J. Indian Inst. Sci. 79, 431–442 (1999)

    Google Scholar 

  21. S. He, M.J. Yaszemski, A.W. Yasko, P.S. Engel, A.G. Mikos, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 21, 2389–2394 (2000). https://doi.org/10.1016/S0142-9612(00)00106-X

    Article  Google Scholar 

  22. J.P. Fisher, D. Dean, A.G. Mikos, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23, 4333–4343 (2002)

    Article  Google Scholar 

  23. D. Hakimimehr, D.-M. Liu, T. Troczynski, In-situ preparation of poly(propylene fumarate)–hydroxyapatite composite. Biomaterials 26, 7297–7303 (2005). https://doi.org/10.1016/j.biomaterials.2005.05.065

    Article  Google Scholar 

  24. X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, L.J. Wilson, A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28, 4078–4090 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.033

    Article  Google Scholar 

  25. B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen, In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008). https://doi.org/10.1016/j.bone.2008.04.013

    Article  Google Scholar 

  26. E. Fernandez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications. Part II: Precipitate formation during setting reactions. J. Mater. Sci. Mater. Med. 10, 177–183 (1999). https://doi.org/10.1023/A:1008989525461

    Article  Google Scholar 

  27. M. Ginebra, E. Fernandez, F.C.M. Driessens, J.A. Planell, Modeling of the hydrolysis of a-tricalcium phosphate. J. Am. Ceram. Soc. 82, 2808–2812 (1999)

    Article  Google Scholar 

  28. A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res. B Appl. Biomater. 96, 326–332 (2011). https://doi.org/10.1002/jbm.b.31771

    Article  Google Scholar 

  29. C. Großardt, A. Ewald, L.M. Grover, J.E. Barralet, U. Gbureck, Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng. Part A 16, 3687–3695 (2010). https://doi.org/10.1089/ten.tea.2010.0281

    Article  Google Scholar 

  30. U. Klammert, A. Ignatius, U. Wolfram, T. Reuther, U. Gbureck, In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater. 7, 3469–3475 (2011). https://doi.org/10.1016/j.actbio.2011.05.022

    Article  Google Scholar 

  31. F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 8, 474–487 (2012). https://doi.org/10.1016/j.actbio.2011.08.005

    Article  Google Scholar 

  32. K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño, A.R. Boccaccini, Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 94, 273–286 (2010). https://doi.org/10.1002/jbm.b.31619

    Article  Google Scholar 

  33. D.L. Alge, W.S. Goebel, T.-M.G. Chu, Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed. Mater. 8, 025010 (2013). https://doi.org/10.1088/1748-6041/8/2/025010

    Article  ADS  Google Scholar 

  34. F. Chen, C. Liu, J. Wei, X. Chen, Physicochemical properties and biocompatibility of white dextrin modified injectable calcium-magnesium phosphate cement. Int. J. Appl. Ceram. Technol. 9, 979–990 (2012). https://doi.org/10.1111/j.1744-7402.2011.02705.x

    Article  Google Scholar 

  35. G. Mestres, M.-P. Ginebra, Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7, 1853–1861 (2011). https://doi.org/10.1016/j.actbio.2010.12.008

    Article  Google Scholar 

  36. C. Moseke, V. Saratsis, U. Gbureck, Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 22, 2591–2598 (2011). https://doi.org/10.1007/s10856-011-4442-0

    Article  Google Scholar 

  37. M. Nabiyouni, T. Brückner, H. Zhou, U. Gbureck, S.B. Bhaduri, Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 66, 23–43 (2017). https://doi.org/10.1016/j.actbio.2017.11.033

    Article  Google Scholar 

  38. N. Ostrowski, A. Roy, P.N. Kumta, Magnesium phosphate cement systems for hard tissue applications: a review. ACS Biomater. Sci. Eng. 2, 1067–1083 (2016). https://doi.org/10.1021/acsbiomaterials.6b00056

    Article  Google Scholar 

  39. A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res.—Part B Appl. Biomater. 96B, 326–332 (2011). https://doi.org/10.1002/jbm.b.31771

    Article  Google Scholar 

  40. U. Klammert, T. Reuther, M. Blank, I. Reske, J.E. Barralet, L.M. Grover, A.C. Kübler, U. Gbureck, Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 6, 1529–1535 (2010). https://doi.org/10.1016/j.actbio.2009.10.021

    Article  Google Scholar 

  41. S.M. Kenny, M. Buggy, Bone cements and fillers: a review. J. Mater. Sci. Mater. Med. 14, 923–938 (2003). https://doi.org/10.1023/A:1026394530192

    Article  Google Scholar 

  42. Q.-Z. Chen, A.R. Boccaccini, Bioactive materials and scaffolds for tissue engineering, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 142–151

    Google Scholar 

  43. E.D. Boland, P.G. Espy, G.L. Bowlin, Tissue engineering scaffolds, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 2828–2837

    Google Scholar 

  44. T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012)

    Article  Google Scholar 

  45. M. Shi, J.D. Kretlow, P.P. Spicer, Y. Tabata, N. Demian, M.E. Wong, F.K. Kasper, A.G. Mikos, Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control Release 152, 196–205 (2011). https://doi.org/10.1016/j.jconrel.2011.01.029

    Article  Google Scholar 

  46. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50–56 (2016). https://doi.org/10.1002/adma.201504313

    Article  Google Scholar 

  47. G. Radha, S. Balakumar, B. Venkatesan, E. Vellaichamy, A novel nano-hydroxyapatite—PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: analysis of its mechanical and biological properties. Mater. Sci. Eng. C 75, 221–228 (2017). https://doi.org/10.1016/j.msec.2016.12.133

    Article  Google Scholar 

  48. A.M. Henslee, S.R. Shah, M.E. Wong, A.G. Mikos, F.K. Kasper, Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. J. Biomed. Mater. Res., Part A 103, 1485–1497 (2015). https://doi.org/10.1002/jbm.a.35288

    Article  Google Scholar 

  49. C.W. Kim, R. Talac, L. Lu, M.J. Moore, B.L. Currier, M.J. Yaszemski, Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute. J. Biomed. Mater. Res., Part A 85A, 1114–1119 (2008). https://doi.org/10.1002/jbm.a.31633

    Article  Google Scholar 

  50. J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater. Sci. Polym. Ed. 12, 673–687 (2001). https://doi.org/10.1163/156856201316883476

    Article  Google Scholar 

  51. S. Hesaraki, F. Moztarzadeh, D. Sharifi, Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res., Part A 83A, 80–87 (2007). https://doi.org/10.1002/jbm.a.31196

    Article  Google Scholar 

  52. W. Chen, H. Zhou, M. Tang, M.D. Weir, C. Bao, H.H.K. Xu, Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng. Part A 18, 816–827 (2012). https://doi.org/10.1089/ten.tea.2011.0267

    Article  Google Scholar 

  53. L.A. Vasconcellos, L.A. dos Santos, Calcium phosphate cement scaffolds with PLGA fibers. Mater. Sci. Eng., C 33, 1032–1040 (2013). https://doi.org/10.1016/j.msec.2012.10.019

    Article  Google Scholar 

  54. A. Lode, K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, M. Gelinsky, Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8, 682–693 (2014). https://doi.org/10.1002/term.1563

    Article  Google Scholar 

  55. A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27, 264–274 (2015). https://doi.org/10.1016/j.actbio.2015.08.036

    Article  Google Scholar 

  56. T. Liu, J. Li, Z. Shao, K. Ma, Z. Zhang, B. Wang, Y. Zhang, Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 56, 9–15 (2018). https://doi.org/10.1016/j.medengphy.2018.03.003

    Article  Google Scholar 

  57. T. Bian, K. Zhao, Q. Meng, H. Jiao, Y. Tang, J. Luo, Fabrication and performance of calcium phosphate cement/small intestinal submucosa composite bionic bone scaffolds with different microstructures. Ceram. Int. 44, 9181–9187 (2018). https://doi.org/10.1016/j.ceramint.2018.02.127

    Article  Google Scholar 

  58. E.B. Montufar, T. Traykova, C. Gil, I. Harr, A. Almirall, A. Aguirre, E. Engel, J.A. Planell, M.P. Ginebra, Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 6, 876–885 (2010). https://doi.org/10.1016/j.actbio.2009.10.018

    Article  Google Scholar 

  59. E.B. Montufar, T. Traykova, E. Schacht, L. Ambrosio, M. Santin, J.A. Planell, M.-P. Ginebra, Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. J. Mater. Sci. Mater. Med. 21, 863–869 (2010). https://doi.org/10.1007/s10856-009-3918-7

    Article  Google Scholar 

  60. D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.-M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. A 100, 1792–1802 (2012). https://doi.org/10.1002/jbm.a.34130

    Article  Google Scholar 

  61. S. Meininger, C. Moseke, K. Spatz, E. März, C. Blum, A. Ewald, E. Vorndran, Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Mater. Sci. Eng., C 98, 1145–1158 (2019). https://doi.org/10.1016/j.msec.2019.01.053

    Article  Google Scholar 

  62. S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 31, 401–411 (2016). https://doi.org/10.1016/j.actbio.2015.11.050

    Article  Google Scholar 

  63. J. Lee, M.M. Farag, E.K. Park, J. Lim, H. Yun, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Mater. Sci. Eng., C 36, 252–260 (2014). https://doi.org/10.1016/j.msec.2013.12.007

    Article  Google Scholar 

  64. J.A. Kim, H. Yun, Y.-A. Choi, J.-E. Kim, S.-Y. Choi, T.-G. Kwon, Y.K. Kim, T.-Y. Kwon, M.A. Bae, N.J. Kim, Y.C. Bae, H.-I. Shin, E.K. Park, Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157, 51–61 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Rezaie, H., Esnaashary, M., Karfarma, M., Öchsner, A. (2020). Conductivity: Materials Design. In: Bone Cement. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-39716-6_2

Download citation

Publish with us

Policies and ethics