Skip to main content

Radar Remote Sensing Applications in Egypt

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Radar remote sensing is a rapidly developing topic with a fast-growing facets of technology and range of applications. Exploratory research studies started in Egypt in the late 1990s on opportunity basis when data were available free of charge. Radar sensors transmit radiation in the microwave bands and use the measured backscatter to infer properties of the earth’s surface. The surface parameters that influence the backscatter are different from those influencing the reflection and emission from optical and thermal infrared bands, respectively. Therefore, radar data usually offer distinctive perspectives on the surface and subsurface properties. This chapter provides an overview of the three spaceborne radar sensors with focus on the most versatile one; the synthetic aperture radar (SAR). The other two are scatterometers and radar altimeters. Due to the increasing availability of space-borne SAR systems and the accessibility of free data, SAR users’ community is expanding in Egypt. A brief theoretical background of SAR is presented, followed by applications of single and dual channel systems, then the newly-developed polarimetric and interferometric systems. The most frequent SAR applications in Egypt are in the fields of geology, hydrology and archeology. No operational applications have been developed yet. Brief information on relevant applications of radar altimetry data are also presented along with an outlook on the future use of radar remote sensing in Egypt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdeen MM, Gaber A, Shokr M, El-Saadawy OA (2018) Minimizing the labelling ambiguity during classification process of the geological units covering the central part of the Suez Canal Corridor, Egypt, using their radar scattering response. Egypt J Remote Sens Space Sci 21(1):S55–S66

    Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Prob 14:R1–R54

    Google Scholar 

  • Barnes CF (2015) Synthetic aperture radar: wave theory foundations, analysis and algorithms, 1st edn. Barnes, 624 p. ISBN-13: 978-0692313732

    Google Scholar 

  • Canada Centre for Remote Sensing (2003) Advanced radar polarimetry tutorial. Available online https://pdfs.semanticscholar.org/2298/476a4ef796c142bf764b579ffb0211bf1b69.pdf

  • Chapman B, Blom RG (2013) Synthetic aperture radar, technology, past and future applications to archaeology. In: Comer DC, Harrower MJ (eds) Mapping archeological landscapes from space. Springer, New York, Heidelberg, London, pp 113–131

    Google Scholar 

  • Cloude SR (2010) Polarization applications in remote sensing. Oxford University Press, Oxford, New York, 466 p

    Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35(1):68–78

    Google Scholar 

  • Colesanti C, Ferretti A, Novali F, Prati C, Rocca F (2003) SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans Geosci Remote Sens 41:1685–1701

    Google Scholar 

  • Crosetto M, Monserral O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogrammetry Remote Sens 115:78–89

    Google Scholar 

  • Darwish N (2017) Evaluating land subsidence in port said city using radar interferometry. M.Sc. thesis, Geology Department, Faculty of Sciences, Port Said University, Egypt

    Google Scholar 

  • Elachi C (1988) Spaceborne radar remote sensing: applications and techniques. IEEE Press, NY, USA

    Google Scholar 

  • Elachi C, Roth LE, Schaber GG (1984) Spaceborne radar subsurface imaging in hyper-arid regions. IEEE Trans Geosci Remote Sens 22:383–388

    Google Scholar 

  • El-Baz F (2007) Use of a desert strip west of the Nile Valley for sustainable development in Egypt. Bull Tethys Geol Soc 2:1–10

    Google Scholar 

  • El-Raey M (2010) Impacts and implications of climate change for the coastal zones of Egypt. In: Michel D, Pandya A (eds) Coastal zones and climate change. Henry L. Stimson Center, Washington, DC, pp 31–50

    Google Scholar 

  • Elsherbini AA (2011) Radar remote sensing of arid regions. Ph.D. dissertation, Electrical Engineering Department, The University of Michigan, Ann Arbor, Michigan, USA

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S et al (2007) The shuttle radar topography mission. Rev Geophys 45(2). https://doi.org/10.1029/2005RG000183

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Google Scholar 

  • Freeman T, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36(3):963–973. https://doi.org/10.1109/36.673687

  • Gaber A, Koch M, El-Baz F (2010) Textural and compositional characterization of Wadi Feiran deposits, Sinai Peninsula, Egypt, using Radarsat-1, PALSAR, SRTM and ETM+ data. Remote Sens 2(1):52–75

    Google Scholar 

  • Gaber A, Koch M, Geriesh MH, Sato M (2011) SAR remote sensing of buried faults: implications for groundwater exploration in the Western Desert of Egypt. Sens Imaging Int J 12(3–4):133–151

    Google Scholar 

  • Gaber A, Darwish N, Sultan Y, Arafat S, Koch M (2014) Monitoring the building stability in Port-Said city, Egypt using differential SAR interferometry. Int J Environ Sustain 3(1):14–22

    Google Scholar 

  • Gaber A, Soliman F, Koch M, El-Baz F (2015) Using full-polarimetric SAR data to characterize the surface sediments in desert areas: a case study in El-Gallaba Plain, Egypt. Remote Sens Environ 162:11–28

    Google Scholar 

  • Gaber A, Amarah BA, Abdelfattah M, Ali S (2017a) Investigating the use of dual-polarized and large incidence angle of SAR data for mapping the fluvial and Aeolian deposits. NRIAG J Astron Geophys 6(2):349–360

    Google Scholar 

  • Gaber A, Darwish N, Koch M (2017b) Minimizing the residual topography effect on interferograms to improve DInSAR results: estimating land subsidence in Port-Said city, Egypt. Remote Sens 9:752. https://doi.org/10.3390/rs9070752

  • Hein A (2004) Processing of SAR data: fundamentals, signal processing, and interferometry. Springer, Berlin, Heidelberg, 291 p

    Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. https://doi.org/10.1029/2004GL021737

  • Joshi N, Baumann M, Ehammer A, Fensholt R, Grogan K, Hostert P et al (2016) A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8(70). https://doi.org/10.3390/rs8010070

  • Ketelaar VBH (2009) Satellite radar interferometry. Springer, The Netherlands, 255 p. ISBN 9781402094286

    Google Scholar 

  • Koch M, Gaber A, Burkholder B, Geriesh MH (2012) Development of new water resources in Egypt with Earth observation data: opportunities and challenges. Int J Environ Sustain 1(3):1–12

    Google Scholar 

  • Koch M, Gaber A, Gereish MH, Zaghloul E, Arafat SM, AbuBakr M (2013) Multisensor characterization of subsurface structures in a desert plain area in Egypt with implications for groundwater exploration. In: Proceedings of SPIE remote sensing conference, vol 8887, pp 23–26, Dresden, Germany

    Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press Taylor and Francis Group, Florida, USA, 422 p

    Google Scholar 

  • Long D (2014) Radar scatterometers. In: Njoku EG (ed) Encyclopedia of remote sensing. Encyclopedia of earth sciences series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9

  • Lou Y, Kim Y, van Zyl J (1996) The NASA/JPL airborne synthetic aperture radar system. The sixth annual JPL airborne earth science workshop, vol 2, pp 51–56, 4–8 Mar 1996, NASA-CR-203428

    Google Scholar 

  • Masahiro E, Nakano R, Shimoda H, Sakata Y, Zaghloul EA, Shimada M (2008) A study for archeological exploration using spaceborne SAR. Japan Aerospace Exploration Agency (JAXA) report. Available online https://repository.exst.jaxa.jp/dspace/bitstream/a-is/15522/1/65135075.pdf

  • Masoud A, Raghavan V, Shinji M, Kiyoji S (2003) JERS-1 interferometric SAR DEM generation and validation in Safaga area, Red Sea coast of Egypt. J Geosci Osaka City Univ 46(13):207–216

    Google Scholar 

  • Maura A, Stewart C, Lemmens K (2015) Satellite radar in support to archaeological research in Egypt: tracing ancient tracks between Egypt and Southern Levant across North Sinai. In: Capriotti Vittozzi G (ed) Egyptian curses 2. A research on ancient catastrophes. Archaeological heritage & multidisciplinary egyptological studies, vol 2, pp 197–221, Rome

    Google Scholar 

  • McCauley JF, Schaber GG, Breed CS, Grolier MJ, Haynes CV, Issawi B et al (1982) Subsurface valleys and geoarcheology of the eastern Sahara revealed by shuttle radar. Science 218(4576):1004–1020

    Google Scholar 

  • Monti-Guarnieri A, Tebaldini S (2008) On the exploitation of target statistics for SAR interferometry applications. IEEE Trans Geosci Remote Sens 46(11):3436–3443

    Google Scholar 

  • National Research Council (2012) Measured global sea-level rise, chapter 2. In: Sea level rise of California, Oregon and Washington: past, present and future. The National Academic Press, Washington, DC

    Google Scholar 

  • Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate change driven accelerated sea level rise detected in the altimeter era. PNAS 115(9):2022–2025

    Google Scholar 

  • Oliver C, Quegan S (2004) Unerstanding synthetic aperture radar images. SciTech Publishing, Herdon, Virginia, USA, 512 p

    Google Scholar 

  • Paillou P, Grandjean G, Baghdadi N, Heggy E, August-Bernex T, Achache J (2003) Subsurface imaging in South-Central Egypt using low-frequency radar: Bir Safsaf revisited. IEEE Trans Geosci Remote Sens 41(7):1672–1684

    Google Scholar 

  • Pan J, Yan X, Zheng Q, Liu WT, Klemas VV (2003) Interpretation of scatterometer ocean wind vector EOFs over the Northwestern Pacific. Remote Sens Environ 84(1):53–68

    Google Scholar 

  • Parcharidis I, Poscolier M, Seleem TA (2012) SAR interferometry monitoring over the folded area of Abu Rawash, Egypt. 4th EARSeL workshop on remote sensing and geology, Mykonos, Greece, 24–25 May

    Google Scholar 

  • Ramadan TM, Nasr AH, Mahmood A (2006) Integration of Radarsat-1 and Landsat TM images for mineral exploration in East Oweinat District, South Western Desert, Egypt. In: ISPRS commission VII mid-term symposium “Remote sensing: from pixels to processes”, pp 244–249, Enschede, The Netherlands, 8–11 May.

    Google Scholar 

  • Raney RK (2007) Hybrid-polarity SAR architecture. IEEE Trans Geosci Remote Sens 45(11):3397–3404

    Google Scholar 

  • Richards A (2009) Remote sensing with imaging radar. Springer, Heidelberg, Dordrecht, London, New York, 376 p

    Google Scholar 

  • Rio MH, Pascual A, Poulain PM, Menna M, Barceló B, Tintoré J (2014) Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci 10:731–744

    Google Scholar 

  • Robinson CA (2002) Application of satellite radar data suggest that the Kharga Depression in south-western Egypt is a fracture rock aquifer. Int J Remote Sens 23(19):4101–4113

    Google Scholar 

  • Robinson CA (2008) Understanding the distribution of groundwater resources using synthetic aperture radar data over Southwest Egypt. In: Proceedings of international geoscience and remote sensing symposium (IGRASS’08), vol 3, pp 7–11, Boston, USA

    Google Scholar 

  • Rosmorduc V, Benveniste J, Bronner E, Dinardo S, Lauret O, Maheu C et al (eds) (2018) Radar altimetry tutorial. ESA online publication. https://www.altimetry.info/filestorage/Radar_Altimetry_Tutorial.pdf

  • Salvini R, Carmignani L, Francioni M, Casazzza P (2015) Elevation modelling and palaeo-environmental interpretation in the Siwa area (Egypt): application of SAR interferometry and radargrammetry to COSMO-SkyMed imagery. CATENA 12:46–62

    Google Scholar 

  • Shaltout M, Tonbol K, Omstedt A (2015) Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 57(4):293–307

    Google Scholar 

  • Shum CK, Ries JC, Tapley BD (1995) The accuracy and applications of satellite altimetry. Geophys J Int 121:321–336

    Google Scholar 

  • Stewart C (2017) Archeological prospection using spaceborne synthetic aperture radar. Ph.D. thesis, Department of Civil Engineering and Computer Science, The University of Rome Tor Vergata. https://www.disp.uniroma2.it/geoinformation/students/geoinformation-dissertations/CStewart_thesis_150dpi.pdf

  • Stewart C, Montanaro R, Sala M, Riccardi P (2016) Feature extraction in the North Saini desert using spaceborne synthetic aperture radar: potential for archeological applications. Remote Sens 8(825). https://doi.org/10.3390/rs8100825

  • Sultan A, Abdel Rahman N, Ramadan TM, Salem SM (2013) The use of geophysical and remote sensing data analysis in the groundwater assessment of El Qaa Plain, South Sinai, Egypt. Aust J Basic Appl Sci 7(1):394–400

    Google Scholar 

  • Touzi R (1992) Extraction of point target response characteristics from complex SAR data. IEEE Trans Geosci Remote Sens 30(6):1158–1161

    Google Scholar 

  • Touzi R, Boerner WM, Lee JS, Lueneburg E (2004) A review of polarimetry in the context of synthetic aperture radar: concept and information extraction. Can J Remote Sens 30(3):380–407

    Google Scholar 

  • Ulaby FT, Long DG (2014) Microwave radar and radiometric remote sensing. University of Michigan Press, Michigan, 984 p. ISBN 978-0-472-11953-6

    Google Scholar 

  • van Zyl JJ (2011) Synthetic aperture radar polarimetry. Wiley, Hoboken, New Jersey, 312 p

    Google Scholar 

  • Weissman DE, Bourassa MA, O’Brien JJ, Tongue JS (2003) Calibrating the QuiKscat/sea winds radar for measuring rainrate over the oceans. IEEE Trans Geosci Remote Sens 41(12):2814–2820

    Google Scholar 

  • Wingham D, Francis C, Baker S, Bouzinac C, Brockley D, Cullen R et al (2006) CryoSat: a mission to determine the fluctuations in Earth’s land and marine ice fields. Adv Space Res 37:841–871

    Google Scholar 

  • Wöppelmann G, Le Cozannet G, de Michele M, Raucoules D, Cazenave A, Garcin M et al (2013) Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys Res Lett 40:2953–2957

    Google Scholar 

  • Zahran KH, Saleh S (2006) Contribution of satellite altimetry data in the geophysical investigation of the Red Sea region, Egypt. Acta Geophys 54(3):303–318

    Google Scholar 

  • Zebker FA, van Zyl JJ (1991) Imaging radar polarimetry: a review. Proc IEEE 79(11):1583–1606

    Google Scholar 

  • Zeyada H, Ezz MM, Nasr AH, Shokr M, Harb HM (2016) Evaluation of the discrimination capability of full polarimetric SAR data for crop classification. Int J Remote Sens 37(11):2585–2603

    Google Scholar 

Download references

Acknowledgements

The author would like to thank all the staff at the National Authority of Remote Sensing and Space Sciences (NARSS) in Egypt who have shared their experience of using SAR data over nearly 20 years. This information is reflected in many passages in this chapter. A special note of appreciation goes to the Late Prof. T. Ramadan who was a pioneer in using SAR data for geological applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed E. Shokr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shokr, M.E. (2020). Radar Remote Sensing Applications in Egypt. In: Elbeih, S., Negm, A., Kostianoy, A. (eds) Environmental Remote Sensing in Egypt. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-39593-3_5

Download citation

Publish with us

Policies and ethics