Skip to main content

Remote Sensing and Modeling of Climate Changes in Egypt

  • Chapter
  • First Online:
Environmental Remote Sensing in Egypt

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Profound impacts of climate change occur at regional levels, affecting, among others, ecosystems, agriculture, hydrology, and carbon cycle at global levels. These changes will have signficant impacts on all aspects of human societies, including food, water, energy, and, not least, the economy itself. In particular, major uncertainties exist for natural and managed ecosystems. We will start by demonstrating the physical fundamentals of the global phenomenon of climate change, its origin and greenhouse gasses emissions, lifetimes, its global impact on critical sectors and resources of sustainable development. Then, we emphasize the vulnerability of Egypt to climate changes and the need for large-scale, global systems for monitoring, modeling, assessment, and follow-up of mitigation and adaptation measures. An outline of the capabilities of remote sensing and GIS techniques for monitoring, mitigating, assessing vulnerabilities to impacts, success stories, modeling, and early warning of extreme events in Egypt, is presented. We end up with an assessment of the needs of Egypt to fulfill its strategic development goals (SDGs) in harmony with reducing the risk of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AATSR:

Advanced Along Track Scanning Radiometer

AMSRE:

Advanced Microwave Scanning Radiometer-EOS

AVHRR:

Advanced Very High Resolution Radiometer

CDM:

Cleaner Development Mechanism

COP:

Conference of Parties

EEAA:

Egyptian Environmental Affairs Agency

ESA:

European Space Agency

GHRSST:

Group for High Resolution Sea Surface Temperature

GMES:

Global Monitoring for Environment and Sustainability

GOES:

Geostationary Operational Environmental Satellite Imager

GOSAT:

Greenhouse Gas Satellite

ICZM:

Integrated Coastal Zone Management Plan

IPCC:

Intergovernmental Panel of Climatic Changes

JAXA:

Japan Aerospace Exploration Agency

LST:

Land Surface Temperature

MODIS:

Moderate Resolution Imaging Spectroradiometer

MOEJ:

The Ministry of the Environment, Japan

MTSAT-1R:

Multi-functional Transport Satellite 1R

NASA:

National Aeronautics and Space Administration

NIES:

National Institute for Environmental Studies, Japan

NOAA:

National Oceanic and Atmospheric Administration

SDG:

Sustainable (Strategic) Development Goals

SEVIRI:

Spinning Enhanced Visible and Infrared Imager

SLR:

Sea Level Rise

SRTM:

Shuttle Radar Topography Mission

SST:

Sea Surface Temperature

TMI:

Tropical Rainfall Measuring Mission Microwave Imager

TNC:

Third National Communication

TRMM:

Tropical Rainfall Monitoring Mission

TSP:

Total Suspended Particulates

UNFCCC:

UN Framework Convention on Climate Changes

WMO:

World Meteorological Organization

References

  • Aboel Fetouh Y, El-Askary H, El-Raey M, Allali M, Sprigg WA, Kafatos M (2013) Annual patterns of atmospheric pollutions and episodes over Cairo Egypt. Adv Meteorol 2013:1–11

    Google Scholar 

  • AerosolWatch (2018) GOES-16 image of Hurricane Frances on September 10, 2018 at 1600 UTC. Retrieved from https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch

  • Agrawala S, Moehner A, El-Raey M, Conway D, Van Aalst M, Hagenstad M et al (2004) Development and climate change in Egypt: focus on coastal resources and the Nile. Organisation for Economic Co-operation and Development

    Google Scholar 

  • Ahmed S (2017) Environmental risk assessment in the city of Alexandria using remote sensing and GIS. Ph.D. thesis

    Google Scholar 

  • Almazroui M (2011) Sensitivity of a regional climate model on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theor Appl Climatol 104(1–2):261–276

    Google Scholar 

  • Becker RH, Sultan M (2009) Land subsidence in the Nile Delta: inferences from radar interferometry. Holocene 19(6):949–954

    Google Scholar 

  • Central Agency for Public Mobilization and Statistics (CAPMAS) (2016) Statistical year book

    Google Scholar 

  • Cools J, Vanderkimpen P, Afandi GE, Abdelkhalek A, Fockedey S, Sammany ME et al (2012) An early warning system for flash floods in hyper-arid Egypt. Nat Hazards Earth Syst Sci 12(2):443–457

    Google Scholar 

  • Deutscher Wetterdienst (2018) Weather satellites around the world. Retrieved from https://www.dwd.de/EN/research/observing_atmosphere/satellites/weather_satellites_node.html

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res Atmos 105(D16):20673–20696

    Google Scholar 

  • Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF et al (2000) Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res Atmos 105(D8):9791–9806

    Google Scholar 

  • Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD et al (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59(3):590–608

    Google Scholar 

  • Egyptian Environmental Affairs Agency (EEAA) (2010) Egypt second national communication under the United Nations Framework Convention on Climate Change (UNFCCC). Egypt Environmental Affairs Agency, Cairo

    Google Scholar 

  • El-Askary H (2006) Air pollution impact on aerosol variability over mega cities using remote sensing technology: case study, Cairo Egypt. Egypt J Remote Sens Space Sci 9:31–40

    Google Scholar 

  • El-Askary H, Kafatos M (2008) Dust storm and black cloud influence on aerosol optical properties over Cairo and the Greater Delta region Egypt. Int J Remote Sens 29(24):7199–7211

    Google Scholar 

  • El-Askary H, Abd El-Mawla SH, Li J, El-Hattab MM, El-Raey M (2014) Change detection of coral reef habitat using Landsat-5 TM, Landsat 7 ETM+ and Landsat 8 OLI data in the Red Sea (Hurghada, Egypt). Int J Remote Sens 35(6):2327–2346

    Google Scholar 

  • El-Askary H, Li J, Li W, Piechota T, Ta T, Jong A et al (2018) Impacts of aerosols on the retreat of the Sierra Nevada Glaciers in California. Aerosol Air Qual Res 18(5):1317–1330

    Google Scholar 

  • El-Askary H, Li W, El-Nadry M, Awad M, Mostafa AR (2019) Strong interactions indicated between dust aerosols and precipitation related clouds in the Nile Delta. In: El-Askary HM et al (eds) Advances in remote sensing and geo informatics applications. Springer International Publishing, Cham, pp 1–4

    Google Scholar 

  • Elbeih SF (2015) An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng J 6(1):1–15

    Google Scholar 

  • El-Hattab MM, Mohamed SA, El-Raey M (2018) Potential tsunami risk assessment to the city of Alexandria, Egypt. Environ Monit Assess 190(9)

    Google Scholar 

  • El-Magd IA, Hasan A, El Sayed A (2015) A century of monitoring urban growth in Menofya Governorate, Egypt, using remote sensing and geographic information analysis. JGIS 07:402–414

    Google Scholar 

  • El-Raey M (1997) Vulnerability assessment of the coastal zone of the Nile Delta of Egypt, to the impacts of sea level rise. Ocean Coast Manage 37(1):29–40

    Google Scholar 

  • El-Raey M (2011) Mapping areas affected by sea-level rise due to climate change in the Nile Delta until 2100. In: Coping with global environmental change, disasters and security. Springer, Berlin, Heidelberg, pp 773–788

    Google Scholar 

  • El-Raey M, Fouda Y, Nasr S (1997) GIS assessment of the vulnerability of the Rosetta area, Egypt to impacts of sea rise. Environ Monit Assess 47(1):59–77

    Google Scholar 

  • El-Raey M, Frihy O, Nasr SM, Dewidar KH (1999a) Vulnerability assessment of sea level rise over Port Said Governorate, Egypt. Environ Monit Assess 56(2):113–128

    Google Scholar 

  • El-Raey M, Dewidar KR, El-Hattab M (1999b) Adaptation to the impacts of sea level rise in Egypt. Mitig Adapt Strat Glob Change 4(3–4):343–361

    Google Scholar 

  • El-Raey M, Nasr S, Frihy O, Desouki S, Dewidar K (1995) Potential impacts of accelerated sea-level rise on Alexandria Governorate, Egypt. J Coast Res 190–204

    Google Scholar 

  • Food and Agriculture Organization (2011) FAO vulnerability map for Egypt. Retrieved from https://www1.wfp.org

  • Hemming D, Iowe J, Biginton M, Betts R, Ryall D (2007) Impacts of mean sea level rise based on current state-of-the-art modeling. Hadley Centre for Climate Prediction and Research, Exeter, UK

    Google Scholar 

  • Intergovernmental Panel on Climate Changes (2014a) Fourth assessment report (IPCC-AR4)

    Google Scholar 

  • Intergovernmental Panel on Climate Changes (2014b) Fifth assessment report (IPCC-AR5)

    Google Scholar 

  • Japan Aerospace Exploration Agency (JAXA) (2015, Oct 31) JAXA global rainfall watch. Retrieved from https://sharaku.eorc.jaxa.jp/GSMaP

  • Kim S-R, Prasad AK, El-Askary H, Lee W-K, Kwak D-A, Lee S-H et al (2014) Application of the Savitzky-Golay filter to land cover classification using temporal MODIS vegetation indices. Photogrammetric Eng Remote Sens 80(7):675–685

    Google Scholar 

  • Lauvaux T, Miles NL, Deng A, Richardson SJ, Cambaliza MO, Davis KJ et al (2016) High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J Geophys Res Atmos 121(10):5213–5236

    Google Scholar 

  • Li W, El-Askary H, ManiKandan K, Qurban M, Garay M, Kalashnikova O (2017) Synergistic use of remote sensing and modeling to assess an anomalously high chlorophyll-a event during summer 2015 in the South Central Red Sea. Remote Sens 9(8):778

    Google Scholar 

  • Li W, El-Askary H, Qurban M, Proestakis E, Garay M, Kalashnikova O et al (2018) An assessment of atmospheric and meteorological factors regulating Red Sea phytoplankton growth. Remote Sens 10(5):673

    Google Scholar 

  • Li W, El-Askary H, Qurban M, Allali M, Manikandan KP (2019) On the drying trends over the MENA countries using harmonic analysis of the enhanced vegetation index. In: El-Askary HM et al (eds) Advances in remote sensing and geo informatics applications. Springer International Publishing, Cham, pp 181–183

    Google Scholar 

  • Marey HS, Gille JC, El‐Askary HM, Shalaby EA, El‐Raey ME (2010) Study of the formation of the “black cloud” and its dynamics over Cairo, Egypt, using MODIS and MISR sensors. J Geophys Res Atmos 115(D21)

    Google Scholar 

  • Marey HS, Gille JC, El-Askary HM, Shalaby EA, El-Raey ME (2011) Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data. Atmos Chem Phys 11(20):10637–10648

    Google Scholar 

  • Masria A, Negm A, Iskander M, Saavedra O (2014) Coastal zone issues: a case study (Egypt). Procedia Eng 70:1102–1111

    Google Scholar 

  • McCarl BA, Musumba M, Smith JB, Kirshen P, Jones R, El-Ganzori A et al (2015) Climate change vulnerability and adaptation strategies in Egypt’s agricultural sector. Mitig Adapt Strat Glob Change 20(7):1097–1109. https://doi.org/10.1007/s11027-013-9520-9

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132

    Google Scholar 

  • Nakajima T, Tonna G, Rao R, Boi P, Kaufman Y, Holben B (1996) Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Opt 35(15):2672–2686

    Google Scholar 

  • Nile Basin Initiative (2012) State of the River Nile basin. Nile Basin Initiative Secretariat, Entebbe, Uganda

    Google Scholar 

  • National Aeronautics and Space Administration (NASA) (2005) Dust storm across the Red Sea. Retrieved from https://visibleearth.nasa.gov/view.php?id=72897

  • National Aeronautics and Space Administration (NASA) (2011) Global climate change: vital signs of the planet. Retrieved from https://climate.nasa.gov/

  • National Aeronautics and Space Administration (NASA) (2014) A-train constellation with details. Retrieved from https://oco.jpl.nasa.gov/galleries/galleryspacecraft/

  • National Aeronautics and Space Administration (NASA) (2018) EOS Aura atmosphere profile measurements. Retrieved from https://aura.gsfc.nasa.gov/images/instruments/eoschemchart_big.jpg

  • National Oceanic and Atmospheric Administration (NOAA) (1996) Hurricane Fran near peak intensity on September 4, 1996 at 1700Z. Retrieved from class.ncdc.noaa.gov

  • Natural Resources Canada (2016) Fundamentals of remote sensing tutorial [PDF file]. Retrieved from https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/resource/tutor/fundam/pdf/fundamentals_e.pdf

  • Nerem RS, National Center for Atmospheric Research Staff (eds) (2016, Jan 19). The climate data guide: global mean sea level from TOPEX & Jason Altimetry. Retrieved from https://climatedataguide.ucar.edu/climate-data/global-mean-sea-level-topex-jason-altimetry

  • NOAA National Centers for Environmental Information (2018a) State of the climate: global climate report for June 2018. Retrieved from https://www.ncdc.noaa.gov/sotc/global/201806

  • NOAA National Centers for Environmental information (2018b) Climate at a glance: global time series. Retrieved from https://www.ncdc.noaa.gov/cag/

  • Prasad AK, El-Askary H, Kafatos M (2010) Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season. Environ Pollut 158(11):3385–3391

    Google Scholar 

  • Sestini G (1989) Implications of climate change for the Nile Delta. Report WG 2/14. UNEP/OCA, Nairobi

    Google Scholar 

  • Smith JB, McCarl BA, Kirshen P, Jones R, Deck L, Abdrabo MA et al (2014) Egypt’s economic vulnerability to climate change. Clim Res 62(1):59–70

    Google Scholar 

  • Solomon S, Qin D, Manning M, Averyt K, Marquis M (eds) (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Stanley DJ, Warne AG (1993) Nile Delta: recent geological evolution and human impact. Science 260(5108):628–634

    Google Scholar 

  • Stern N (2008) The economics of climate change. Am Econ Rev 98(2):1–37

    Google Scholar 

  • Strzepek KM, Onyeji SC, Saleh M, Yates D (1995) An assessment of integrated climate change impacts on Egypt. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 180–200

    Google Scholar 

  • Strzepek KM, Yates DN, El Quosy DED (1996) Vulnerability assessment of water resources in Egypt to climatic change in the Nile basin. Clim Res 6(2):89–95

    Google Scholar 

  • Sušnik J, Vamvakeridou-Lyroudia LS, Savić DA, Kapelan Z (2013) Integrated modelling of a coupled water-agricultural system using system dynamics. J Water Clim Change 4(3):209–231

    Google Scholar 

  • Sušnik J, Vamvakeridou-Lyroudia LS, Baumert N, Kloos J, Renaud FG, La Jeunesse I et al (2015) Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile Delta, Egypt. Sci Total Environ 503:279–288

    Google Scholar 

  • The Sustainable Agricultural Development Strategy towards 2030 (SADS) (2010) Agricultural Research & Development Council (ARDC)

    Google Scholar 

  • Third National Communication (TNC) (2016) Egypt third national communication under the United Nations Framework Convention on Climate Change (UNFCCC). Egypt Ministry of Environment

    Google Scholar 

  • Tolba MK, Saab NW (2009) Arab environment: climate change. Beirut, Arab forum for environment and development

    Google Scholar 

  • Whitney K, Scudiero E, El-Askary HM, Skaggs TH, Allali M, Corwin DL (2018) Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA. Ecol Ind 93:889–898

    Google Scholar 

  • Wurl D, Grainger RG, McDonald AJ, Deshler T (2010) Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere. Atmos Chem Phys 10(9):4295–4317

    Google Scholar 

  • Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S et al (2013) The role of satellite remote sensing in climate change studies. Nat Clim Change 3(10):875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Raey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raey, M.E., Askary, H.E. (2020). Remote Sensing and Modeling of Climate Changes in Egypt. In: Elbeih, S., Negm, A., Kostianoy, A. (eds) Environmental Remote Sensing in Egypt. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-39593-3_14

Download citation

Publish with us

Policies and ethics