Skip to main content

Oil Palm Plantation Wastes

  • Chapter
  • First Online:
Waste Management in the Palm Oil Industry

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In Malaysia, palm oil industry is an irreplaceable economic activity due to its high global demand in both food and non-food industries. Thus, large land areas have been used for oil palm plantation in this country. However, oil palm plantation is also generating large amount of raw biomass. The major oil palm biomass produced in the oil palm plantation includes oil palm fronds and oil palm trunk. One hectare of oil palm planted area produces approximately 10 tonnes of oil palm fronds and 75 tonnes of oil palm trunk. In fact, huge amount of solid oil palm biomass is found on the plantations and the rest is generated in the mills during the production of crude palm oil. Even though both oil palm plantation solid wastes have been occupying the majority among the oil palm biomass, the fronds are merely utilized as mulch, while the trunks are normally left to burn or decay in the plantation area. Such underutilization of oil palm plantation wastes is encouraging the researchers to find ways to valorize the solid wastes into different bio-based products. Thus, this review highlights the potential reuse of oil palm fronds and oil palm trunk as the lignocellulosic biomass in producing bioenergy, bio-based chemicals, biochar, fertilizer, animal feed and other bio-based products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Manaf, S. F., Md Jahim, J., Harun, S., & Luthfi, A. A. I. (2018). Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Industrial Crops and Products, 115, 6–15.

    Google Scholar 

  • Abdullah, H., Jie, W. S., Yusof, N., & Isa, I. M. (2016). Fuel and ash properties of biochar produced from microwave-assisted carbonisation of oil palm trunk core. Journal of Oil Palm Research, 28, 81–92.

    Article  Google Scholar 

  • Ahmad, F. B., Zhang, Z., Doherty, W. O. S., & O’Hara, I. M. (2019). The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 9–23.

    Google Scholar 

  • Alias, N. B., Ibrahim, N., Hamid, M. K. A., Hasbullah, H., Ali, R. R., & Kasmani, R. M. (2015). Investigation of oil palm wastes’ pyrolysis by thermo-gravimetric analyzer for potential biofuel production. Energy Procedia, 78–83.

    Google Scholar 

  • Ang, S. K., Adibah, Y., Abd-Aziz, S., & Madihah, M. S. (2015). Potential uses of xylanase-rich lignocellulolytic enzymes cocktail for oil palm trunk (OPT) degradation and lignocellulosic ethanol production. Energy & Fuels, 29, 5103–5116.

    Article  Google Scholar 

  • Azmi, M. A., Yusof, M. T., Zunita, Z., & Hassim, H. A. (2019). Enhancing the utilization of oil palm fronds as livestock feed using biological pre-treatment method. In IOP Conference Series: Earth and Environmental Science.

    Google Scholar 

  • Bardant, T. B., Winarni, I., & Sukmana, H. (2017). High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production. In AIP Conference Proceedings.

    Google Scholar 

  • Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15, 550–583.

    Article  Google Scholar 

  • Bubparenu, N., Laemsak, N., Chitaree, R., & Sihabut, T. (2018). Effect of density and surface finishing on sound absorption of oil palm frond. Asia-Pacific Journal of Science and Technology, 23.

    Google Scholar 

  • Bukhari, N. A., Jahim, J. M., Loh, S. K., Bakar, N. A., & Luthfi, A. A. I. (2019). Response surface optimisation of enzymatically hydrolysed and dilute acid pretreated oil palm trunk bagasse for succinic acid production. BioResources, 14, 1679–1693.

    Google Scholar 

  • Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370–381.

    Article  Google Scholar 

  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.

    Article  Google Scholar 

  • Dur, S., Daulay, A. H., Padli Nasution, M. I., Sari, R. F., & Furqan, M. (2018). Preparation and properties nanozeolite-filled modified oil palm trunk starch nanocomposites. In Journal of Physics: Conference Series.

    Google Scholar 

  • EBC. (2012). European biochar certificate—Guidelines for a sustainable production of biochar. Arbaz, Switzerland: European Biochar Foundation (EBC). http://www.europeanbiochar.org/en/download. Version 8.1E of 4th April 2019, https://doi.org/10.13140/rg.2.1.4658.7043.

  • Eom, I. Y., Oh, Y. H., Park, S. J., Lee, S. H., & Yu, J. H. (2015a). Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresource Technology, 185, 143–149.

    Article  Google Scholar 

  • Eom, I. Y., Yu, J. H., Jung, C. D., & Hong, K. S. (2015b). Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Biotechnology for Biofuels, 8.

    Google Scholar 

  • Farah Amani, A. H., Toh, S. M., Tan, J. S., & Lee, C. K. (2018). The efficiency of using oil palm frond hydrolysate from enzymatic hydrolysis in bioethanol production. Waste and Biomass Valorization, 9, 539–548.

    Google Scholar 

  • Febrina, D., Jamarun, N., Zain, M., & Khasrad. (2017). Effects of using different levels of oil palm fronds (Fopfs) fermented with phanerochaete chrysosporium plus minerals (p, s and mg) instead of napier grass on nutrient consumption and the growth performance of goats. Pakistan Journal of Nutrition, 16, 612–617.

    Google Scholar 

  • Ghani, A. A. A., Rusli, N. D., Shahudin, M. S., Goh, Y. M., Zamri-Saad, M., Hafandi, A., et al. (2017). Utilisation of oil palm fronds as ruminant feed and its effect on fatty acid metabolism. Pertanika Journal of Tropical Agricultural Science, 40, 215–224.

    Google Scholar 

  • Hamchara, P., Chanjula, P., Cherdthong, A., & Wanapat, M. (2018). Digestibility, ruminal fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with Lentinus sajor-caju in goats. Asian-Australasian Journal of Animal Sciences, 31, 1619–1626.

    Article  Google Scholar 

  • Harahap, R. P., Jayanegara, A., Nahrowi, & Fakhri, S. (2018). Evaluation of oil palm fronds using fiber cracking technology combined with Indigofera sp. in ruminant ration by Rusitec. In AIP Conference Proceedings.

    Google Scholar 

  • Hazeena, S. H., Pandey, A., & Binod, P. (2016). Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renewable Energy, 98, 216–220.

    Article  Google Scholar 

  • Ho, M. C., Ong. V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization–A review. Renewable and Sustainable Energy Reviews, 112, 75–86.

    Google Scholar 

  • Ho, M. C., & Wu, T. Y. (2020). Sequential pretreatment with alkaline hydrogen peroxide and choline chloride:copper (II) chloride dihydrate–Synergistic fractionation of oil palm fronds. Bioresource Technology, 301, 122684.

    Google Scholar 

  • Jafari, S., Meng, G. Y., Rajion, M. A., Torshizi, M. A. K., & Ebrahimi, M. (2018). Effect of supplementation of oil palm (Eleis guineensis) frond as a substitute for concentrate feed on rumen fermentation, carcass characteristics and microbial populations in sheep. Thai Journal of Veterinary Medicine, 48, 9–18.

    Google Scholar 

  • Kabir, G., Mohd Din, A. T., & Hameed, B. H. (2017). Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study. Bioresource Technology, 241, 563–572.

    Google Scholar 

  • Kumar, D., Singh, B., & Korstad, J. (2017). Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 73, 654–671.

    Article  Google Scholar 

  • Kunasundari, B., Arai, T., Sudesh, K., Hashim, R., Sulaiman, O., Stalin, N. J., et al. (2017). Detoxification of sap from felled oil palm trunks for the efficient production of lactic acid. Applied Biochemistry and Biotechnology, 183, 412–425.

    Article  Google Scholar 

  • Lai, L. W., & Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. BioResources, 8(2), 2792–2804.

    Google Scholar 

  • Lamaming, J., Hashim, R., Sulaiman, O., Leh, C. P., Sugimoto, T., & Nordin, N. A. (2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127, 202–208.

    Article  Google Scholar 

  • Lee, C. B. T. L., Wu, T. Y., Ting, C. H., Tan, J. K., Siow, L. F., Cheng, C. K., Md. Jahim, J., & Mohammad, A. W. (2019). One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresource Technology, 278, 486–489.

    Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology & Biochemistry, 43, 1812–1836.

    Article  Google Scholar 

  • Liew, R. K., Nam, W. L., Chong, M. Y., Phang, X. Y., Su, M. H., Yek, P. N. Y., et al. (2018). Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection, 115, 57–69.

    Article  Google Scholar 

  • Loh, S. K., Cheong, K. Y., Choo, Y. M., & Salimon, J. (2015). Formulation and optimisation of spent bleaching earth-based bio organic fertiliser. Journal of Oil Palm Research, 27, 57–66.

    Google Scholar 

  • Loh, S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141, 285–298.

    Article  Google Scholar 

  • Loow, Y. L., New, E. K., Yang, G. H., Ang, L. Y., Foo, L. Y. W., & Wu, T. Y. (2017a) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 24(9), 3591–3618.

    Google Scholar 

  • Loow., Y. L., & Wu, T. Y., Lim, Y. S., Tan, K. A., Siow, L. F., Jahim, J. M., & Mohammad, A. W. (2017b). Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conversion and Management, 138, 248–260.

    Google Scholar 

  • Loow, Y. L., Wu, T. Y., Yang, G. H., Ang, L. Y., New, E. K., Siow, L. F., Jahim, J. M., Mohammad, A. W., & Teoh, W. H. (2018). Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresource Technology, 249, 818–825.

    Google Scholar 

  • Luthfi, A. A. I., Tan, J. P., Harun, S., Manaf, S. F. A., & Jahim, J. M. (2019). Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess and Biosystems Engineering, 42, 117–130.

    Article  Google Scholar 

  • Mahmood, W. M. F. W., Ariffin, M. A., Harun, Z., Ishak, N. A. I. M., Ghani, J. A., & Rahman, M. N. A. (2015). Characterisation and potential use of biochar from gasified oil palm wastes. Journal of Engineering Science and Technology, 10, 45–54.

    Google Scholar 

  • Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46, 7939–7954.

    Article  Google Scholar 

  • Marlida, Y., Arnim, & Roza, E. (2016). The effect treated of oil palm trunk by ligninase thermostable to improvement fiber quality as energy sources by ruminant. International Journal of ChemTech Research, 9, 429–436.

    Google Scholar 

  • Masilamany, D., Mat, M. C., & Seng, C. T. (2017). The potential use of oil palm frond mulch treated with imazethapyr for weed control in Malaysian coconut plantation. Sains Malaysiana, 46, 1171–1181.

    Article  Google Scholar 

  • Mastuli, M. S., Kamarulzaman, N., Kasim, M. F., Sivasangar, S., Saiman, M. I., & Taufiq-Yap, Y. H. (2017). Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. International Journal of Hydrogen Energy, 42, 11215–11228.

    Article  Google Scholar 

  • Maulina, S., & Iriansyah, M. (2018). Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. In IOP Conference Series: Materials Science and Engineering.

    Google Scholar 

  • Maulina, S., & Rahmadi, I. (2017). The utilization of oil palm fronds in producing oxalic acid through oxidation. In AIP Conference Proceedings.

    Google Scholar 

  • Mohd Zakria, R., Gimbun, J., Asras, M. F. F., & Chua, G. K. (2017). Magnesium sulphate and Î’-alanine enhanced the ability of Kluyveromyces marxianus producing bioethanol using oil palm trunk sap. Biofuels, 8, 595–603.

    Google Scholar 

  • Nasution, D. Y., Marpongahtun, Gea, S., Ardiansyah, & Ridho. (2018). Characterization of composite boards made of oil palm trunk flour/maleic anhydride grafted polypropylene. In Journal of Physics: Conference Series.

    Google Scholar 

  • Ong, V. Z., Wu, T. Y., Lee, C. B. T. L., Cheong, N. W. R., & Shak, K. P. Y. (2019). Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochemistry, 58, 104598.

    Google Scholar 

  • Ramli, N. A. S., & Amin, N. A. S. (2015). Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium. Energy Conversion and Management, 95, 10–19.

    Article  Google Scholar 

  • Ramli, N. A. S., & Amin, N. A. S. (2017). Optimization of biomass conversion to levulinic acid in acidic ionic liquid and upgrading of levulinic acid to ethyl levulinate. Bioenergy Research, 10, 50–63.

    Article  Google Scholar 

  • Selamat, M. E., Hashim, R., Sulaiman, O., Kassim, M. H. M., Saharudin, N. I., & Taiwo, O. F. A. (2019). Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 197, 526–532.

    Article  Google Scholar 

  • Selamat, M. E., Hui, T. Y., Hashim, R., Sulaiman, O., Kassim, M. H. M., & Stalin, N. J. (2018). Properties of particleboard made from oil palm trunks added magnesium oxide as fire retardant. Journal of Physical Science, 29, 59–75.

    Article  Google Scholar 

  • Sitthikitpanya, S., Reungsang, A., & Prasertsan, P. (2018). Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 43, 4284–4293.

    Article  Google Scholar 

  • Sitthikitpanya, S., Reungsang, A., Prasertsan, P., & Khanal, S. K. (2017). Two-stage thermophilic bio-hydrogen and methane production from oil palm trunk hydrolysate using Thermoanaerobacterium thermosaccharolyticum KKU19. International Journal of Hydrogen Energy, 42, 28222–28232.

    Article  Google Scholar 

  • Sukudom, N., Jariyasakoolroj, P., Jarupan, L., & Tansin, K. (2019). Mechanical, thermal, and biodegradation behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. Journal of Material Cycles and Waste Management, 21, 125–133.

    Article  Google Scholar 

  • Suryani, H., Zain, M., Ningrat, R. W. S., & Jamarun, N. (2017). Effect of dietary supplementation based on an ammoniated palm frond with direct fed microbials and virgin coconut oil on the growth performance and methane production of bali cattle. Pakistan Journal of Nutrition, 16, 599–604.

    Article  Google Scholar 

  • Warly, L., Suyitman, Evitayani, & Fariani, A. (2017). Nutrient digestibility and apparent bioavailability of minerals in beef cattle fed with different levels of concentrate and oil-palm fronds. Pakistan Journal of Nutrition, 16, 131–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaik Eong Poh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poh, P.E., Wu, T.Y., Lam, W.H., Poon, W.C., Lim, C.S. (2020). Oil Palm Plantation Wastes. In: Waste Management in the Palm Oil Industry. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-39550-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39550-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39549-0

  • Online ISBN: 978-3-030-39550-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics