Skip to main content

Current Injection into Oxide-Confined Single-Photon Emitting Diodes

  • Chapter
  • First Online:
Electrically Driven Quantum Dot Based Single-Photon Sources

Part of the book series: Springer Theses ((Springer Theses))

  • 495 Accesses

Abstract

In this chapter, the van Roosbroeck system is applied to investigate the current flow in an electrically driven QD-based single-photon emitting diode. The device features an oxidized aperture for the site-controlled QD nucleation, which is also intended to improve the confinement of the injection current. The experimentally recorded electroluminescence, however, shows the counterintuitive light emission from parasitic QDs far away from the aperture, which contradicts the expected current confining property. The experimental observations are reproduced by a theoretical model, that predicts a rapid lateral current spreading above the oxide layer. This phenomenon is thoroughly investigated and traced back to the absence of carrier recombination above the oxide layer in the low-injection regime at cryogenic temperatures. Finally, by a revision of the doping design, a superior current confinement is achieved, that enables the highly selective excitation of a small domain above the aperture—in particular it allows for the electrical pumping of single QDs. This is evidenced by numerical simulations under stationary and pulsed excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experimental measurements reported in this section have been carried out by Jan-Hindrik Schulze at Technical University of Berlin.

References

  1. Bayer M, Ortner G, Stern O, Kuther A, Gorbunov AA, Forchel A, Hawrylak P, Fafard S, Hinzer K, Reinecke TL, Walck SN, Reithmaier JP, Klopf F, Schäfer F (2002) Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B 65(19):195315. https://doi.org/10.1103/physrevb.65.195315

    Article  ADS  Google Scholar 

  2. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, Chichester

    Google Scholar 

  3. Buckley S, Rivoire K, Vučković J (2012) Engineered quantum dot single-photon sources. Rep Prog Phys 75(12):126503. https://doi.org/10.1088/0034-4885/75/12/126503

    Article  ADS  Google Scholar 

  4. Chow WW, Jahnke F (2013) On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 37(3):109–184. https://doi.org/10.1016/j.pquantelec.2013.04.001

    Article  ADS  Google Scholar 

  5. Dawson P, Rubel O, Baranovskii SD, Pierz K, Thomas P, Göbel EO (2005) Temperature dependent optical properties of InAs/GaAs quantum dots: Independent carrier versus exciton relaxation. Phys Rev B 72(23):235301. https://doi.org/10.1103/PhysRevB.72.235301

    Article  ADS  Google Scholar 

  6. Ferreira R, Bastard G (1999) Phonon-assisted capture and intradot Auger relaxation in quantum dots. Appl Phys Lett 74(19):2818. https://doi.org/10.1063/1.124024

    Article  ADS  Google Scholar 

  7. Gioannini M, Cedola AP, Santo ND, Bertazzi F, Cappelluti F (2013) Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE J Photovolt 3(4):1271–1278. https://doi.org/10.1109/jphotov.2013.2270345

    Article  Google Scholar 

  8. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74(1):145. https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  Google Scholar 

  9. Gready D, Eisenstein G (2013) Carrier dynamics and modulation capabilities of 1.55-\(\upmu \)m quantum-dot lasers. IEEE J Sel Top Quant 19(4):1900307–1900307. https://doi.org/10.1109/jstqe.2013.2238610

    Article  ADS  Google Scholar 

  10. Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, KrĂĽger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S (2015) Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 6:7662. https://doi.org/10.1038/ncomms8662

    Article  ADS  Google Scholar 

  11. Heindel T, Kessler CA, Rau M, Schneider C, Fürst M, Hargart F, Schulz WM, Eichfelder M, Roßbach R, Nauerth S, Lermer M, Weier H, Jetter M, Kamp M, Reitzenstein S, Höfling S, Michler P, Weinfurter H, Forchel A (2012) Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J Phys 14(8):083001. https://doi.org/10.1088/1367-2630/14/8/083001

    Article  Google Scholar 

  12. Heinrichsdorff F (1998) MOCVD growth and laser applications of In(Ga)As/GaAs quantum dots. PhD thesis, Technical University Berlin

    Google Scholar 

  13. Kaganskiy A, Fischbach S, Strittmatter A, Rodt S, Heindel T, Reitzenstein S (2018) Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt Commun 413:162–166. https://doi.org/10.1016/j.optcom.2017.12.032

    Article  ADS  Google Scholar 

  14. Kantner M, Bandelow U, Koprucki T, Schulze JH, Strittmatter A, Wünsche HJ (2016) Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans Electron Devices 63(5):2036–2042. https://doi.org/10.1109/ted.2016.2538561

    Article  ADS  Google Scholar 

  15. Kavokin KV (2003) Fine structure of the quantum-dot trion. Phys Status Solidi A 195(3):592–595. https://doi.org/10.1002/pssa.200306157

    Article  ADS  Google Scholar 

  16. Kolarczik M, Owschimikow N, Herzog B, Buchholz F, Kaptan YI, Woggon U (2015) Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: the role of Coulomb attraction and dimensionality. Phys Rev B 91(23):235310. https://doi.org/10.1103/PhysRevB.91.235310

    Article  ADS  Google Scholar 

  17. Koprucki T, Wilms A, Knorr A, Bandelow U (2011) Modeling of quantum dot lasers with microscopic treatment of Coulomb effects. Opt Quantum Electron 42(11):777–783. https://doi.org/10.1007/s11082-011-9479-2

    Article  Google Scholar 

  18. Magnúsdóttir I, Uskov AV, Bischoff S, Tromborg B, Mørk J (2002) One- and two-phonon capture processes in quantum dots. J Appl Phys 92(10):5982. https://doi.org/10.1063/1.1512694

    Article  ADS  Google Scholar 

  19. Michalzik R (2013) VCSEL fundamentals. In: Michalzik R (ed) VCSELs—fundamentals, technology and applications of vertical-cavity surface-emitting lasers, Springer series in optical sciences, vol 166, chap 2. Springer, Berlin, Heidelberg, pp 19–75. https://doi.org/10.1007/978-3-642-24986-0_2

    Google Scholar 

  20. Nielsen TR, Gartner P, Jahnke F (2004) Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys Rev B 69:235314. https://doi.org/10.1103/PhysRevB.69.235314

    Article  ADS  Google Scholar 

  21. Palankovski V, Quay R (2004) Analysis and simulation of heterostructure devices. Series in computational microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0560-3

    Book  Google Scholar 

  22. Santori C, Fattal D, Yamamoto Y (2010) Single-photon devices and applications. Wiley, Weinheim

    Google Scholar 

  23. Strittmatter A, Holzbecher A, Schliwa A, Schulze JH, Quandt D, Germann TD, Dreismann A, Hitzemann O, Stock E, Ostapenko IA, Rodt S, Unrau W, Pohl UW, Hoffmann A, Bimberg D, Haisler VA (2012) Site-controlled quantum dot growth on buried oxide stressor layers. Phys Status Solidi A 209(12):2411–2420. https://doi.org/10.1002/pssa.201228407

    Article  ADS  Google Scholar 

  24. Strittmatter A, Schliwa A, Schulze JH, Germann TD, Dreismann A, Hitzemann O, Stock E, Ostapenko IA, Rodt S, Unrau W, Pohl UW, Hoffmann A, Bimberg D, Haisler VA (2012) Lateral positioning of InGaAs quantum dots using a buried stressor. Appl Phys Lett 100(9):093111. https://doi.org/10.1063/1.3691251

    Article  ADS  Google Scholar 

  25. Switaiski T, Woggon U, Alden Angeles DE, Hoffmann A, Schulze JH, Germann TD, Strittmatter A, Pohl UW (2013) Carrier dynamics in InAs/GaAs submonolayer stacks coupled to Stranski-Krastanov quantum dots. Phys Rev B 88(3):035314. https://doi.org/10.1103/physrevb.88.035314

    Article  ADS  Google Scholar 

  26. Tischler JG, Bracker AS, Gammon D, Park D (2002) Fine structure of trions and excitons in single GaAs quantum dots. Phys Rev B 66(8):081310. https://doi.org/10.1103/PhysRevB.66.081310

    Article  ADS  Google Scholar 

  27. Unrau W (2015) Realisierung einer elektrisch betriebenen Einzelphotonenquelle mit verspannungsinduziert platzierten Quantenpunkten. PhD thesis, Technical University Berlin. https://doi.org/10.14279/depositonce-4396

  28. Unrau W, Quandt D, Schulze JH, Heindel T, Germann TD, Hitzemann O, Strittmatter A, Reitzenstein S, Pohl UW, Bimberg D (2012) Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl Phys Lett 101(21):211119. https://doi.org/10.1063/1.4767525

    Article  ADS  Google Scholar 

  29. Wilms A, Mathé P, Schulze F, Koprucki T, Knorr A, Bandelow U (2013) Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials. Phys Rev B 88:235421. https://doi.org/10.1103/PhysRevB.88.235421

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kantner .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kantner, M. (2020). Current Injection into Oxide-Confined Single-Photon Emitting Diodes. In: Electrically Driven Quantum Dot Based Single-Photon Sources. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-39543-8_4

Download citation

Publish with us

Policies and ethics