Skip to main content

Brain Dynamics Explained by Means of Spectral-Structural Neuronal Networks

  • Conference paper
  • First Online:
  • 333 Accesses

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

In this chapter, we propose a mathematical-physical model, starting from the morphological-functional assumption of the fractal brain, by activating brain non-differentiable dynamics through the determinism-nondeterminism inference of the responsible mechanisms.

12th CHAOS Conference Proceedings, 18–22 June 2019, Chania, Crete, Greece.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Kändel, Principles of Neural Science, 5th edn. (McGraw-Hill Companies, 2013)

    Google Scholar 

  2. H. Atmanspacher, Quantum Approaches to Consciousness (The Stanford Encyclopaedia of Philosophy, 2011)

    Google Scholar 

  3. H. Atmanspacher, W. Fach, A structural-phenomenological typology of mind-matter correlation. J. Anal. Psychol. 58, 219–244 (2013)

    Article  Google Scholar 

  4. F. Caserta, W.D. Eldred, E. Fernandez, R.E. Hausman, L.R. Stanford, S.V. Bulderev, S. Schwarzer, H.E. Stanley, Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J. Neurosci. Methods 56, 133–144 (1995)

    Article  Google Scholar 

  5. F. Caserta, H.E. Stanley, W.D. Eldred, G. Daccord, R.E. Hausman, J. Nittman, Physical mechanisms underlying neurite outgrowth: a quantitative analysis of neuronal shape. Phys. Rev. Lett. 64, 95–98 (1990)

    Article  ADS  Google Scholar 

  6. T.A. Witten Jr., L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

  7. K.D. Kniffki, M. Pawlak, C. Vahle-Hinz, Scaling behavior of the dendritic branches of thalamic neurons. Fractals 1, 171–178 (1993)

    Article  Google Scholar 

  8. G. Werner, Perspectives on the neuroscience of cognitions and consciousness. BioSystems 87, 82–95 (2007)

    Article  ADS  Google Scholar 

  9. G. Werner, Consciousness related neural events viewed as brain state space transition. Cogn. Neurodyn. 3, 83–95 (2009)

    Article  Google Scholar 

  10. R.L. de Valois, K.K. de Valois, Spatial Vision, Oxford Psychology series No. 14, (Oxford University Press, New York, 1988)

    Google Scholar 

  11. R.L. de Valois, K.K. de Valois, A multi-stage color model. Vision Res. 33, 1053–1065 (1993)

    Article  Google Scholar 

  12. G. von Békési, Problems relating psychological and electrophysiological observations in sensory perception. Perspect. Biol. Med. 11, 179–194 (1970)

    Article  Google Scholar 

  13. S.B. Lowen, M.C. Teich, Fractal Auditory Nerve Firing Patterns May Derive From Fractal Switching in Sensory Hair Cell Ion Channels, in Proceedings of the AIP Conference on American Institute of Physics, vol. 285 eds. P.H. Handel, A.L. Chung (1993), pp. 745–748

    Google Scholar 

  14. S.B. Lowen, M.C. Teich, Fractal based Point Processes (Wiley, New York, 2005)

    Book  Google Scholar 

  15. N.B. Karayiannis, A.N. Venetsanopoulos, Artificial neural networks, learning algorithms, performance evaluation, and applications. Springer Int. Eng. Comput. Sci. 209 (1993)

    Google Scholar 

  16. A. Slavova, Cellular Neural Networks: Dynamics and Modeling, Mathematical Modeling: Theory and Applications, vol. 16, (Springer, Berlin, 2003)

    Google Scholar 

  17. N. Chomski, Language and the Study of Mind (Sansyusya Publishing, Tokyo, 1982)

    Google Scholar 

  18. T.W.S. Chow, Neural Networks and Computing. Learning Algorithms and Applications, Series in Electrical and Computer Engineering (2007)

    Google Scholar 

  19. M.H. Díaz, F.M. Córdova, L. Cañete, F. Palominos, F. Cifuentesa, C. Sánchez, M. Herrera, Order and chaos in the brain: fractal time series analysis of the EEG activity during a cognitive problem solving task, Proc. Comput. Sci. Inf. Technol. Quant. Manage. 55, 1410–1419 (2015)

    Article  Google Scholar 

  20. H. Diaz, F. Córdova, Harmonic fractals in the brain: transient tuning and synchronic coordination in the quasi-chaotic background of ongoing neural EEG activity. Proc. Comput. Sci. 17, 403–411 (2013)

    Article  Google Scholar 

  21. A.J. Ibáñez-Molina, S. Iglesias-Parro, Fractal characterization of internally and externally generated conscious experiences. Brain Cogn. 87, 69–75 (2014)

    Article  Google Scholar 

  22. A. Khodabakhsh, A. Mehran, R. Majid, A.M. Esfandiar, S. Firoozeh, Brain activity of women is more fractal than men. Neurosci. Lett. 535, 7–11 (2013)

    Article  Google Scholar 

  23. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Company, New York, 1983)

    Book  Google Scholar 

  24. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  25. L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics (Imperial College Press, London, UK, 2011)

    Book  Google Scholar 

  26. L. Nottale, Scale relativity: a fractal matrix for organization in nature. Electron. J. Theor. Phys. 4, 187–274 (2007)

    Google Scholar 

  27. M. Agop, N. Forna, I. Casian-Botez, New theoretical approach of the physical processes in nanostructures. J. Comput. Theor. Nanosci. 5, 483–489 (2008)

    Article  Google Scholar 

  28. M. Agop, A. Gavriluţ, G. Crumpei, B. Doroftei, Informational non-differentiable entropy and uncertainty relations in complex systems. Entropy 16, 6042–6058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Agop, A. Gavriluţ, G. Ştefan, B. Doroftei, Implications of non-differentiable entropy on a space-time manifold. Entropy 17, 2184–2197 (2015)

    Article  ADS  Google Scholar 

  30. A. Timofte, I. Casian-Botez, D. Scurtu, M. Agop, System dynamics control through the fractal potential. Acta Phys. Pol. A 119, 304–311 (2011)

    Article  Google Scholar 

  31. D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Cresson, Scale relativity theory for one dimensional non differentiable manifolds. Chaos Solitons Fractals 14, 553–562 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. V.S. Bîrlescu, M. Agop, M. Craus, Computational properties of a fractal medium. Int. J. Quantum Inf. 12, 22 (2014). https://doi.org/10.1142/S0219749914500221

    Article  MathSciNet  Google Scholar 

  34. P. Lévy, Theories de l’Addition Aléatoires (Gauthier-Villars, Paris, 1937)

    MATH  Google Scholar 

  35. E.A. Jackson, Perspectives on Nonlinear Dynamics (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  36. J.V. Armitage, W.F. Eberlein, Elliptic Functions (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  37. M. Chaichian, N.F. Nelipa, Introduction to Gauge Field Theories (Springer, Berlin, Heidelberg, 1984)

    Book  Google Scholar 

  38. M. Toda, Theory of Nonlinear Lattices (Springer, New York, Berlin, 1981)

    Book  Google Scholar 

  39. M. Toda, Nonlinear lattice and soliton theory. IEEE Trans. CAS 30, 542–554 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Willard, General Topology, (Addison-Wesley Pub. Co., Reading, MA, 1970) ISBN 0486434796, Retrieved 2013

    Google Scholar 

  41. T.A. Brown, Genomes, 2nd edn. (Wiley-Liss, Oxford, 2002). ISBN -10: 0-471-25046-5

    Google Scholar 

  42. J. Gardiner, R. Overall, J. Marc, The fractal nature of the brain. NeuroQuantology 8(2), 137–141 (2010)

    Article  Google Scholar 

  43. G. Crumpei, A. Gavriluţ, I. Crumpei Tanasă, M. Agop, New Paradigms on Information, Mind and Reality from a Transdisciplinary Perspective (Junimea Publishing House, Iaşi, 2016)

    Google Scholar 

  44. S. Pockett, The Nature of Consciousness: A Hypothesis, Writers Club Press (2000)

    Google Scholar 

  45. J. McFadden, The conscious electromagnetic information (Cemi) field theory: the hard problem made easy? J. Conscious. Stud. 9(8), 45–60 (2002)

    Google Scholar 

  46. J. McFadden, Synchronous firing and its influence on the brain’s electromagnetic field: evidence for an electromagnetic field theory of consciousness. J. Conscious. Stud. 9(4), 23–50 (2002)

    Google Scholar 

  47. J. McFadden, The CEMI Field Theory: Seven Clues to the Nature of Consciousness, ed. by J.A. Tuszynski (Springer, The Emerging Physics of Consciousness, Berlin, 2006), pp. 385–404

    Google Scholar 

  48. W.R. Uttal, Neural Theories of Mind: Why the Mind-Brain Problem May Never Be Solved (Erlbaum, Mahwah, NJ, 2005)

    Google Scholar 

  49. V.S. Ramachandran, Mirror Neurons and Imitation Learning as the Driving Force Behind the Great Leap Forward in Human Evolution. Edge Foundation. Retrieved 19 Oct 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Gavriluţ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agop, M., Gavriluţ, A., Crumpei, G., Eva, L. (2020). Brain Dynamics Explained by Means of Spectral-Structural Neuronal Networks. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_3

Download citation

Publish with us

Policies and ethics