Skip to main content

Coupled Fractal Structures with Elements of Cylindrical Type

  • Conference paper
  • First Online:
12th Chaotic Modeling and Simulation International Conference (CHAOS 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

By the numerical modelling method the behavior of the deformation field of the coupled fractal structure with elements of cylindrical type was investigated. It is shown that the presence of variable parameters (semiaxes, modules) lead to the stochastic behavior of the complex deformation field. Complex zero displacement field operators for both separate and coupled elements of the structure are introduced. It is shown that the transposition of separate operators in the zero operator for a coupled structure leads to the appearance of a nonzero complex deformation field. At the same time, noise tracks appear on the background of stochastic peaks. The noise track is a stochastic ring, inside of which there is a regular area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  2. D. Boumeister, A. Eckert, A. Zeilinger, Physics of Quantum Information (Springer, New York, 2001)

    Google Scholar 

  3. Y. Ozhigov, Quantum computers speed up classical with probability zero. Chaos, Solitons Fractals 10, 1707–1714 (1999)

    Article  MathSciNet  Google Scholar 

  4. D. Castelvecchi, Quantum computers ready to leap out of the lab. Nature 541, 9–10, 5 Jan 2017

    Google Scholar 

  5. A.N. Omelyanchuk, E.V. Ilyichev, S.N. Shevchenko, Quantum Coherent Phenomena in Josephson Qubits (Naukova Dumka, Kiev, 2013)

    Google Scholar 

  6. M.N. Fedorov, I.A. Volkov, Yu.M. Mikhailova. Coutrites and kukwarts in spontaneous parametric scattering of light, correlation and entanglement of states. JETP 142 (1(7)), 20–43 (2012)

    Google Scholar 

  7. Y.S. Kivshar, N.N. Rozanov (Eds.), Nonlinearities in Periodic Structures and Metamaterials (Fizmatlit, Moscow, 2014)

    Google Scholar 

  8. G. Tosi, G. Christmann, N.G. Berloff et al., Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. 8(3), 190–194 (2012)

    Article  Google Scholar 

  9. U. Schneider, L. Hackermüller, J. Ronzheimer et al., Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nat. Phys. 8(3), 213–218 (2012)

    Article  Google Scholar 

  10. K. Heyman, The map in the brain: grid cells may help us navigate. Science 312, 680–681 (2006)

    Article  Google Scholar 

  11. V.S. Abramov, Quantum dots in a fractal multilayer system. Bull. Rus. Acad. Sci. Phys. 81(5), 625–632 (2017)

    Article  ADS  Google Scholar 

  12. V.S. Abramov, Active Nanoelements with variable parameters in fractal quantum systems. Bull. Rus. Acad. Sci. Phys. 82(8), 1062–1067 (2018)

    Article  ADS  Google Scholar 

  13. O.P. Abramova, A.V. Abramov, Attractors and deformation field in the coupled fractal multilayer nanosystem. CMSIM J. 2, 169–179 (2017)

    Google Scholar 

  14. O.P. Abramova, Mutual influence of attractors and separate stochastic processes in a coupled fractal structures. Bull. Donetsk Nat. Univ. A, 1, 50–60 (2017)

    Google Scholar 

  15. M. Fyhn, S. Molden, M.P. Witter, E.I. Moser, Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004)

    Article  ADS  Google Scholar 

  16. T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, Microstructure of spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)

    Article  ADS  Google Scholar 

  17. F. Sargolini, M. Fyhn, T. Hafting et al., Conjunctive representation of position, direction, and velocity in the entorhinal cortex. Science 312, 758–762 (2006)

    Article  ADS  Google Scholar 

  18. V.S. Abramov, Alteration of the stochastic state of the deformation field in the model multilayer nanosystem. Bull. Donetsk Nat. Univ. A, 2, 81–89 (2014)

    Google Scholar 

  19. O.P. Abramova, A.V. Abramov, Effect of ordering of displacement fields operators of separate quantum dots, elliptical cylinders on the deformation field of coupled fractal structures, in “11th Chaotic Modeling and Simulation International Conference”. Springer Proceedings in Complexity, ed. by C.H. Skiadas, I. Lubashevsky (Springer Nature Switzerland AG, 2019), pp. 15–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga P. Abramova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abramova, O.P., Abramov, A.V. (2020). Coupled Fractal Structures with Elements of Cylindrical Type. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_2

Download citation

Publish with us

Policies and ethics