Skip to main content

Some Implications of Invariant Model of Boltzmann Statistical Mechanics to the Gap Between Physics and Mathematics

  • Conference paper
  • First Online:
Book cover 12th Chaotic Modeling and Simulation International Conference (CHAOS 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

Some implications of a scale-invariant model of Boltzmann statistical mechanics to physical foundation of the gap between physics and mathematics, Riemann hypothesis, analytic number theory, Cantor uncountability theorem, continuum hypothesis, Goldbach conjecture, and Russell paradox are studied. Quantum nature of space and time is described by introduction of dependent internal measures of space and time called spacetime and independent external measures of space and time. Because of its hyperbolic geometry, its discrete fabric, and its stochastic atomic motions, physical space is called Lobachevsky-Poincaré-Dirac-Space.

12th CHAOS Conference Proceedings, 18 - 22 June 2019, Chania, Crete, Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. de Broglie, Interference and corpuscular light. Nature 118, 441–442 (1926); Sur la Possibilité de Relier les Phénomènes d’Interférence et de Diffraction à la Théorie des Quanta de Lumière. Acad. Sci. Paris 183, 447–448 (1927); La Structure Atomique de la Matière et du Rayonnement et la Mécanique Ondulatoire. 184, 273–274 (1927); Sur le Rôle des Ondes Continues en Mécanique Ondulatoire. 185, 380–382 (1927)

    Google Scholar 

  2. L. de Broglie, Non-linear wave mechanics: a causal interpretation (Elsevier, New York, 1960)

    MATH  Google Scholar 

  3. L. de Broglie, The reinterpretation of wave mechanics. Found. Phys. 1(5), 5–15 (1970)

    Article  ADS  Google Scholar 

  4. E. Madelung, Quantentheorie in hydrodynamischer form. Z. Physik. 40, 332–326 (1926)

    Google Scholar 

  5. E. Schrödinger, Über die Umkehrung der Naturgesetze. Sitzber Preuss Akad Wiss Phys-Math Kl 193, 144–153 (1931)

    MATH  Google Scholar 

  6. R. Fürth, Über Einige Beziehungen zwischen klassischer Staristik und Quantenmechanik. Z. Phys. 81, 143–162 (1933)

    Article  ADS  MATH  Google Scholar 

  7. D. Bohm, A suggested interpretation of the quantum theory in terms of “Hidden Variables” I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. T. Takabayasi, On the foundation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8(2), 143–182 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Bohm, J.P. Vigier, Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96(1), 208–217 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Nelson, Derivation of the schrödinger equation from newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966)

    Article  ADS  Google Scholar 

  11. E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, New Jersey, 1985)

    MATH  Google Scholar 

  12. L. de la Peña, New foundation of stochastic theory of quantum mechanics. J. Math. Phys. 10(9), 1620–1630 (1969)

    Article  ADS  MATH  Google Scholar 

  13. L. de la Peña, A.M. Cetto, Does quantum mechanics accept a stochastic support? Found. Phys. 12(10), 1017–1037 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.O. Barut, Schrödinger’s interpretation of ψ as a continuous charge distribution. Ann. Phys. 7(4–5), 31–36 (1988)

    Article  Google Scholar 

  15. A.O. Barut, A.J. Bracken, Zitterbewegung and the internal geometry of the electron. Phys. Rev. D 23(10), 2454–2463 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. J.P. Vigier, De Broglie waves on dirac Aether: a testable experimental assumption. Lett. Nuvo Cim. 29(14), 467–475 (1980); C. Cufaro Petroni, J.P. Vigier, Dirac’s Aether in relativistic quantum mechanics, found. Physics 13(2), 253–286 (1983); J.P. Vigier, Derivation of inertia forces from the einstein-de broglie-bohm (E.d.B.B.) causal stochastic interpretation of quantum mechanics, Found. Phys. 25(10), 1461–1494 (1995)

    Google Scholar 

  17. F.T. Arecchi, R.G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987)

    Book  Google Scholar 

  18. O. Reynolds, On the dynamical theory of incompressible viscous fluid and the determination of the criterion. Phil. Trans. R. Soc. A 186(1), 123–164 (1895)

    ADS  MATH  Google Scholar 

  19. D. Enskog, Kinetische Theorie der Vorgange in Massig Verdunnten Gasen (Almqvist and Wiksells Boktryckeri-A.B., Uppsala, 1917). English translation: G. S. Brush, Kinetic Theory (Pergamon Press, New York, 1965), pp. 125–225

    Google Scholar 

  20. G.I. Taylor, Statistical theory of turbulence-parts I-IV. Proc. R. Soc. A 151(873), 421–478 (1935)

    Article  ADS  MATH  Google Scholar 

  21. T. Kármán, L. Howarth, On the statistical theory of isotropic turbulence. Proc. R. Soc. A 164(917), 192–215 (1938)

    ADS  MATH  Google Scholar 

  22. H.P. Robertson, The invariant theory of isotropic turbulence. Proc. Camb. Phil. Soc. 36, 209–223 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A N. Kolmogoroff, Local structure on turbulence in incompressible fluid. Acad. Sci. URSS 30, 301–305 (1941); A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13, 82–85 (1962)

    Google Scholar 

  24. A.M. Obukhov, On the distribution of energy in the spectrum of turbulent flow. Bull. Acad. Sci. USSR 32, 19–22 (1941); Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962)

    Google Scholar 

  25. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Chandrasekhar, Stochastic, Statistical, and Hydrodynamic Problems in Physics and Astronomy, Selected Papers, vol. 3 (University of Chicago Press, Chicago, 1989), 199–206

    Google Scholar 

  27. W. Heisenberg, On the theory of statistical and isotropic turbulence, Proc. R. Soc. A 195, 402–406 (1948); Zur Statistischen Theorie der Turbulenz. Z. Phys. 124, 7–12, 628–657 (1948)

    Google Scholar 

  28. G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)

    MATH  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Fluid Dynamics (Pergamon Press, New York, 1959)

    Google Scholar 

  30. H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, 1972)

    Google Scholar 

  31. S.H. Sohrab, On a scale-invariant model of statistical mechanics and the laws of thermodynamics. J. Energy Resour. Technol. 138(3), 1–12 (2016)

    Article  Google Scholar 

  32. S.H. Sohrab, Invariant forms of conservation equations and some examples of their exact solutions. J. Energy Resour. Technol. 136, 1–9 (2014)

    Article  Google Scholar 

  33. S.H. Sohrab, Solutions of modified equation of motion for laminar flow across (Within) Rigid (Liquid) sphere and cylinder and resolution of stokes paradox. AIP Conf. Proc. 1896, 130004 (2017)

    Article  Google Scholar 

  34. S.H. Sohrab, On a scale invariant model of statistical mechanics, kinetic theory of ideal gas, and riemann hypothesis. Int. J. Mod. Commun. Tech. Res. 3(6), 7–37 (2015)

    Google Scholar 

  35. S.H. Sohrab, Scale Invariant Model of Statistical Mechanics and Quantum Nature of Space, Time, and dimension. Chaotic Model. Simul (CMSIM) 3, 231–245 (2016)

    Google Scholar 

  36. R.S. de Groot, P. Mazur, Nonequilibrium Thermodynamics (North-Holland, 1962)

    Google Scholar 

  37. H. Schlichting, Boundary-Layer Theory (McGraw Hill, New York, 1968)

    MATH  Google Scholar 

  38. F.A. Williams, Combustion Theory, 2nd edn. (Addison Wesley, New York, 1985)

    Google Scholar 

  39. B.L. van der Waerden (ed.), Towards quantum mechanics. In: Sources of Quantum Mechanics (Dover, New York, 1967), pp. 1–59

    Google Scholar 

  40. M. Planck, On the law of the energy distribution in the normal spectrum. Ann. Phys. 4, 553–558 (1901)

    Article  Google Scholar 

  41. H.B.G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–795 (1948)

    MATH  Google Scholar 

  42. P.A.M. Dirac, Is there an Aether? Nature 168, 906 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  43. S.H. Sohrab, Invariant Model of Statistical Mechanics, Quantum Mechanics, and Physical Nature of Space and Time. In: Proceedings of the International Conference on 8th CHAOS (Henri Poincaré Institute, Paris, France, 2015), pp. 769–801, 26–29

    Google Scholar 

  44. E.T. Whittaker, A history of the theories of aether and electricity, vol. 2 (Tomash Publishers, New York, 1954)

    MATH  Google Scholar 

  45. L. Euler, Réflexions sur l’ Espace et le Temps, Histoire de l’Academie Royale des Sciences et Belles Letters. 4, 324–33 (1748)

    Google Scholar 

  46. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  47. H. Poincaré, Sur la Dynamique de l’Electron, vol. 21 (Rendiconti del Circolo matematico di Palermo, 1906), pp. 9–175

    Article  MATH  Google Scholar 

  48. H. Minkowski, Space and time. In: Theory of Relativity (Dover, New York, 1952), p. 75

    Google Scholar 

  49. H. Poincaré, Science and Hypothesis (Dover, New York, 1952), p. 65

    MATH  Google Scholar 

  50. H.L. Montgomery, The pair correlation of zeroes of the zeta function, analytic number theory. In: Proceedings of the Symposium on Pure Mathematics, vol. 24 (American Mathematical Society, Providence, RI, 1973), pp. 181–193

    Google Scholar 

  51. A.M. Odlyzko, On the distribution of spacings between zeroes of the zeta function. Math. Comp. 48, 273–308 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Derbyshire, Prime Obsession (Joseph Henry Press, Washington, D.C, 2003)

    MATH  Google Scholar 

  53. S. du Marcus, The Music of Primes (Harper Collins, New York, 2003)

    MATH  Google Scholar 

  54. M.L. Mehra, Random Matrices, 3rd edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  55. M.V. Berry, Quantum chaology. Proc. R. Soc. London A 413, 183–198 (1990)

    ADS  Google Scholar 

  56. A. Connes, Geometry from the spectral point of view. Lett. Math. Phys. 34(3), 203–238 (1995); Trace Formula in Noncommutative Geometry and Zeroes of the Riemann Zeta Function, Preprint ESI 620 (Vienna, 1998), pp. 1–88

    Google Scholar 

  57. A. Connes, On the Fine Structure of Spacetime, on Space and Time, ed. S. Majid (Cambridge University Press, 2008), pp. 196–237

    Google Scholar 

  58. J.L. Casti, Mathematical Mountaintops (Oxford University Press, 2001)

    Google Scholar 

  59. H. Cramér, Prime numbers and probability. Skand. Mat. Kongr. 8, 107–115 (1936)

    Google Scholar 

  60. A. Granville, Harald Cramér and the distribution of prime numbers. Scand. Actuarial J. 1, 1995 (1995)

    MATH  Google Scholar 

  61. W. Heisenberg, The Physical Principles of Quantum Theory (Dover, New York, 1949)

    MATH  Google Scholar 

  62. J.S. Bell, The Continuous and the Infinitesimal in Mathematics and Philosophy (Polimetrica, Milan, Italy, 2006)

    MATH  Google Scholar 

  63. A. Robinson, Non-Standard Analysis (North-Holland Publishing Company, Amsterdam, 1966)

    MATH  Google Scholar 

  64. E. Nelson, Internal set theory: a new approach to nonstandard analysis. Bull. Am. Math. Soc. 83(6), 1165–1198 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  65. S.H. Sohrab, Implications of a scale invariant model of statistical mechanics to nonstandard analysis and the wave equation. WSEAS Trans. Math. 7(3), 95–103 (2008)

    Google Scholar 

  66. G. Cantor, Contributions to the Founding of the Theory of Transfinite Numbers (Dover, New York, 1955)

    MATH  Google Scholar 

  67. E. Nelson, Warning signs of a possible collapse of contemporary mathematics. In Infinity, New Research Frontiers, eds. M. Heller, W. Hugh Woodin (Cambridge University Press, 2011), pp. 76–85

    Google Scholar 

Download references

Acknowledgements

This research was in part supported by NASA grant No. NAG3-1863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash H. Sohrab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sohrab, S.H. (2020). Some Implications of Invariant Model of Boltzmann Statistical Mechanics to the Gap Between Physics and Mathematics. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_19

Download citation

Publish with us

Policies and ethics