Skip to main content

Threshold Method for Control of Chaotic Oscillations

  • Conference paper
  • First Online:
12th Chaotic Modeling and Simulation International Conference (CHAOS 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

The classical Chua’s circuit that realizes chaotic behavior is presented. This circuit having a simple nonlinear element designed to be accurately piecewise-linear modelled. The circuit was modelled by using MultiSim software environment. The system’s behavior is investigated through numerical simulations, by using well-known tools of nonlinear theory, such as chaotic attractor and time distributions of the chaotic coordinates. Using threshold method was practical realization of the control of chaotic attractor. This classical Chua’s circuit that generates a chaotic and controlled attractor with a fixed period can be used in modern systems transmitting and receiving information. Number of periodic (controlled) attractor can be used as a key for masking of information carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Lingala, N.S. Namachchivaya, I. Pavlyukevich, Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone. Nonlinearity 30(4), 1376–1404 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Lingala, N.S. Namachchivaya, I. Pavlyukevich, W. Wedig, Random perturbations of periodically driven nonlinear oscillators. Procedia IUTAM 19, 91–100 (2016)

    Article  Google Scholar 

  3. C.H. Skiadas, Exact solutions of stochastic differential equations: Gompertz, generalized logistic and revised exponential. Methodol. Comput. Appl. Probab. 12(2), 261–270 (2010)

    Article  MathSciNet  Google Scholar 

  4. C.H. Skiadas, C. Skiadas, Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms (Taylor & Francis Group, LLC, 2008), pp. 1–345

    Google Scholar 

  5. P.P. Horley, M.Ya. Kushnir, M. Morales-Meza, A. Sukhov, V. Rusyn, Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current. Physica B 486, 60–63 (2016)

    Article  ADS  Google Scholar 

  6. L. Pribylova, Bifurcation routes to chaos in an extended Van der Pol’s equation applied to economic models. Electron. J. Differ. Equ. 53, 1–21 (2009)

    Google Scholar 

  7. V. Rusyn, O. Savko, Modeling of chaotic behavior in the economic model, in CHAOS 2015—8th Chaotic Modeling and Simulation International Conference, Proceedings 2015 (2015), pp. 705–712

    Google Scholar 

  8. S. Vaidyanathan, A. Sambas, S. Kacar, U. Cavusoglu, A new finance chaotic system, its electronic circuit realization, passivity based synchronization and an application to voice encryption. Nonlinear Eng. 8(1), 193–205 (2019)

    Article  ADS  Google Scholar 

  9. V. Hajnova, L. Pribylova, Two-parameter bifurcations in LPA model. J. Math. Biol. 75(5), 1235–1251 (2017)

    Article  MathSciNet  Google Scholar 

  10. V. Rusyn, Modeling and research information properties of Rucklidge chaotic system using LabView, in CHAOS 2017—Proceedings: 10th Chaotic Modeling and Simulation International Conference (2017), pp. 739–744

    Google Scholar 

  11. C.-H. Lien, S. Vaidyanathan, A. Sambas, Sukono, M. Mamat, W.S.M. Sanjaya, Subiyanto, A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design, in IOP Conference Series: Materials Science and Engineering (Vol. 332, Issue 1, Article no. 012010, 2018)

    Article  Google Scholar 

  12. V.B. Rusyn, Modeling and research of Chaotic Rossler system with LabView and Multisim software environments, in Bulletin of National Technical University of Ukraine «Kyiv Polytechnic Institute», Series Radiotechnique Radioapparatus Building (Eddition 59, 2014), pp. 21–28

    Google Scholar 

  13. A. Sambas, W.S.M. Sanjaya, M. Mamat, P.R. Putra, A.T. Azar, Mathematical modelling of chaotic jerk circuit and its application in secure communication system. Stud. Fuzziness Soft Comput. 337, 133–153 (2016)

    Article  Google Scholar 

  14. V. Rusyn, A. Stancu, L. Stoleriu, Modeling and control of chaotic multi-scroll Jerk system in LabView, in Bulletin of National Technical University of Ukraine «Kyiv Polytechnic Institute», Series Radiotechnique Radioapparatus Building (Edition 62, 2015), pp. 94–99

    Google Scholar 

  15. A. Sambas, S. Vaidyanathan, M. Mamat, W.S. Mada Sanjaya, A six-term novel chaotic system with hidden attractor and its circuit design. Stud. Syst. Decis. Control 133, 365–373 (2018)

    Article  MathSciNet  Google Scholar 

  16. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  17. Z.F. Wang, L. Shi, H. Wu, N. Helian, O.L. Chua, Fractional memristor. Appl. Phys. Lett. 111, 243502 (2017)

    Article  ADS  Google Scholar 

  18. M. Itoh, L. Chua, Dynamics of hamiltonian systems and memristor circuits. Int. J. Bifurc. Chaos 27(2), 1730005 (2017)

    Article  MathSciNet  Google Scholar 

  19. S.G. Stavrinides, How to teach memristor in school. Phys. Educ. 52(3), 033008 (2017)

    Article  ADS  Google Scholar 

  20. V. Rusyn, S. Khrapko, Memristor: modeling and research of information properties, in Springer Proceedings in Complexity (2019), pp. 229–238

    Google Scholar 

  21. J. Kalomiros, S.G. Stavrinides, A.N. Miliou, I.P. Antoniades, L. Magafas, A.N. Anagnostopoulos, The nonlinear current behaviour of a driven R-L-Varactor in the low frequency range. Nonlinear Anal. Real World Appl. 10(2), 691–701 (2009)

    Article  Google Scholar 

  22. V.B. Rusyn, I. Pavlyukevich, L. Pribylova, H.C. Skiadas, Design, modeling and research of the new non-autonomous chaotic generator. Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv. 77, 13–16 (2019)

    Google Scholar 

  23. A.N. Miliou, S.G. Stavrinides, A.P. Valaristos, A.N. Anagnostopoulos, Nonlinear electronic circuit—Part II: Synchronization in a chaotic MODEM scheme (Review Paper). Nonlinear Anal. Theory, Methods Appl. 71, e21–e31 (2009)

    Article  Google Scholar 

  24. S.G. Stavrinides, N.F. Karagiorgos, K. Papathanasiou, S. Nikolaidis, A.N. Anagnostopoulos, A digital non-autonomous chaotic oscillator suitable for information transmission. IEEE TCAS-II: Express Briefs 60(12), 887–891 (2013)

    Google Scholar 

  25. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  26. V. Rusyn, M. Kushnir, O. Galameiko, Hyperchaotic control by thresholding method, in Modern Problems of Radio Engineering, Telecommunications and Computer Science—Proceedings of the 11th International Conference, TCSET’2012, art. No. 6192785 (2012), p. 67

    Google Scholar 

  27. V.B. Rusyn, A. Stancu, L. Stoleriu, Modeling and control of chaotic multi-scroll Jerk system in LabView. Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv. 63, 94–99 (2015)

    Google Scholar 

  28. V.B. Rusyn, L. Pribylova, D.-G. Dimitriu, Control of the modified chaotic Chua’s circuit using threshold method. Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv. 75, 61–65 (2018)

    Google Scholar 

  29. V. Rusyn, Modeling, analysis and control of chaotic Rucklidge system. J. Telecommun. Electron. Comput. Eng. (JTEC), Tom 11(1), 43–47 (2019)

    Google Scholar 

  30. T. Matsumoto, A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31, 1055–1058 (1990)

    Article  MathSciNet  Google Scholar 

  31. L. Chua, A zoo of strange attractors from the canonical Chua’s circuits, in Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems (Cat. No. 92CH3099-9, Vol. 2, 1992), pp. 916–926

    Google Scholar 

  32. K. Murali, S. Sinha, Experimental realization of chaos control by thresholding. Phys. Rev. E 68(1), 016210 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Rusyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rusyn, V., Skiadas, C.H. (2020). Threshold Method for Control of Chaotic Oscillations. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_18

Download citation

Publish with us

Policies and ethics