Skip to main content

Microwave Oven Plasma Reactor Moding and Its Detection

  • Conference paper
  • First Online:
12th Chaotic Modeling and Simulation International Conference (CHAOS 2019)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

Over the last 20 years microwave power supplies in domestic microwave ovens have increasingly found applications in plasma reactors for processing of functional carbon-based nanostructures for engineering materials, electronics and biomedical applications. However, the packaged magnetrons used in the microwave ovens are known to suffer from moding due to frequency pushing and pulling, both of which may limit the efficiency of the plasma treatment process. This paper explores patent records for high voltage doubler circuits, coupled to the cathode filament heater circuit as the magnetron pushing source and the multimode resonant cavity plasma load as the pulling source. These circuits are compared with microwave oven plasma reactor circuits published in peer reviewed journals. This study highlights that a number of academic research groups have investigated power supply design parameters such as the input transformer voltage, as well as the power level using different capacitors values, as a result the transformer output is poorly described. Identification of moding within the plasma reactors due to magnetron warm-up time and changing cavity load conditions is also poorly reported. This work attempts to address this information gap on microwave oven plasma processes, through the extraction of reports on a packaged magnetron warm-up times and near-field E-probe mode measurement within the Cambridge Fluid Systems MRC 200 plasma reactor using a argon and hydrogen plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.L. Spencer, Method of treating foodstuffs. US Patent 2,495,429 (issued Jun 24, 1950)

    Google Scholar 

  2. P.L. Spencer, Coffee brewing. US patent 2,601,067 (issued Jun 17, 1952)

    Google Scholar 

  3. R.N. Gedye, W. Rank, K.C. Westaway, The rapid synthesis of organic compounds in microwave ovens. Can. J. Chem. 6(1), 17–26 (1988)

    Article  Google Scholar 

  4. A. Ribner, Microwave plasma etching machine and method of etching. US Patent 4,804,431, (issued Feb 14, 1989)

    Google Scholar 

  5. M.C. Salvadori, V.P. Mammana, O.G. Martins, F.T. Degasperi, Plasma-assisted chemical vapour deposition in a tunable microwave cavity. PSST 4(3), 489–494 (1995)

    ADS  Google Scholar 

  6. V.J. Law, D. Tait, Contaminated ceramic plasma cleaning. Eur Semicond. 19(9), S38–S41 (1997)

    Google Scholar 

  7. V.J. Law, D. Tait, Microwave plasma cleaning of ion implant ceramic insulators. Vacuum 49(4), 273–278 (1998)

    Article  ADS  Google Scholar 

  8. V.J. Law, N. Macgearailt, Visualization of a dual frequency plasma etch process. Meas. Sci. Technol. 18(3), 645–649 (2007)

    Article  ADS  Google Scholar 

  9. A. Irzh, I. Genish, L. Klein, L.A. Solovyov, A. Gedanken, Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides. Langmuir 26(8), 5976–5984 (2010)

    Article  Google Scholar 

  10. P.H. Talemi, G.P. Simon, Preparation of graphene nanowalls by a simple microwave-based method. Carbon 48, 3993–4000 (2010)

    Article  Google Scholar 

  11. Y.H. Jung, S.O. Jang, H.J. You, Hydrogen generation from the dissociation of water using microwave plasmas. Chin. Phys. Lett. 3(6), 065204 (2013)

    Article  Google Scholar 

  12. N. Ismail, F.N. Ani, A review on plasma treatment for the processing of solid waste. Jurnal Teknologi 72(5), 41–49 (2015)

    Article  Google Scholar 

  13. E. Chaiya, P. Khongkrapan, N. Tippayawong, Use of non-thermal microwave plasma for syngas production from dry reforming of compressed biomethane. Int. J. App. Eng. Res. 9(20), 6835–6842 (2014)

    Google Scholar 

  14. P. Khongkrapan, P. Thanompongchart, N. Tippayawong, T. Kiatsiriroat, Microwave plasma assisted pyrolysis of refuse derived fuels. Cent. Eur. J. Eng. 4(1), 72–79 (2014)

    Google Scholar 

  15. N. Tippayawonga, E. Chaiya, P. Thanompongchart, P. Khongkrapan, Sustainable energy from biogas reforming in a microwave discharge reactor. Proc. Eng. 118, 120–127 (2015)

    Article  Google Scholar 

  16. W. Choe, G.-C. Kwon, J. Kim, J. Kim, S.-J. Jeon, S. Huh, Simple microwave preionization source for ohmic plasmas. Rev. Sci. Instrum. 71(7), 2728–2732 (2000)

    Article  ADS  Google Scholar 

  17. C. Chaichumporn, P. Ngamsirijit, N. Brkoonklin, K. Eaiprasetsak, M. Fuangfoong, Design and construction of 2.45 GHz microwave plasma source at atmospheric pressure. Proc. Eng. 8, 94–100 (2011)

    Article  Google Scholar 

  18. V.N. Tikhonov, S.N. Aleshin, I.A. Ivanov, A.V. Tikhonov, The low-cost microwave plasma sources for science and industry applications. J. Phys. Conf. Ser. 927, 012067 (2017)

    Google Scholar 

  19. Some resources and ideas for plasma experiments: plasma experiments with commercial gas tubes and some ideas for microwave oven conversions. The Bell Jar. 4(2) (1997). http://www.belljar.net/plasma.htm (Accessed June 2019)

  20. V.J. Law, D.P. Dowling, Converting a microwave oven into a plasma reactor: a review. Int. J. Chem. Eng. 2018, 12 (2018)

    Google Scholar 

  21. V.J. Law, D.P. Dowling, Domestic microwave oven and fix geometry waveguide applicator processing of organic compounds and biomaterials: a review. Glob. J. Res. Eng. (A). 18(2), Version 1.0, 19 (2018)

    Google Scholar 

  22. V.J. Law, D.P. Dowling, The domestic microwave oven as a prototype tool. Anal. Chem. Ind. J. (2018)

    Google Scholar 

  23. S. Birla, Effect of magnetron frequency on heating pattern in domestic oven, in Conference Presentations and White Papers: Biological Systems Engineering, vol. 54 (2010)

    Google Scholar 

  24. S.P. Yeong, M.C. Law, C.C.V. Lee, Y.S. Chan, Modelling batch microwave heating of water. IOP Conf. Ser. Mater. Sci. Eng. 217, 012035 (2107)

    Article  Google Scholar 

  25. Z. Zhang, T. Su, S. Zhang, Shape effect on the temperature field during microwave heating process. J. Food Qual. 2018, 24 (2018)

    Google Scholar 

  26. S. Dąbrowska, T. Chudoba, J. Wojnarowicz, W. Łojkowski, Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review. Crystals 8(10), 379 (2018)

    Article  Google Scholar 

  27. A.Y.N. Hui, G. Wang, B. Lin, W.-T. Chan, Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices. Lab Chip 5, 1173–1177 (2005)

    Article  Google Scholar 

  28. S. Nomura, H. Toyota, S. Mukasa et al., Production of hydrogen in a conventional microwave oven. J. Appl. Phys. 106, 073306 (2009)

    Article  ADS  Google Scholar 

  29. S. Nomura, H. Yamashita, H. Toyota et al., Simultaneous production of hydrogen and carbon nanotubes in a conventional microwave oven, in International Symposium on Plasma Chemistry (ISPC19), Bochum, Germany, vol. 65 (2009)

    Google Scholar 

  30. H. Toyota, S. Nomura, S. Mukasa, A practical electrode for microwave plasma processes. Int. J. Mater. Sci. Appl. 2(3), 83–88 (2013)

    Google Scholar 

  31. I. Rahim, S. Nomura, S. Mukasa, H. Toyota, Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods. Appl. Therm. Eng. 90, 120–126 (2015)

    Article  Google Scholar 

  32. V.J. Law, D.P. Dowling, Electronic valve instabilities and mode jumps. CMSIM J. 1, 3–35 (2017)

    Google Scholar 

  33. V.J. Law, D.P. Dowling, Magnetron modes and the chimera states, in Fractional Dynamics and Anomalous Transport in Plasma Science, Chap 2, ed. by C. H. Skiadas (Springer, 2018), pp. 35–65. ISBN 978-3-030-04482-4

    Google Scholar 

  34. R.C. Lo, Application of microfluidics in chemical engineering. Chem. Eng. Process. Tech. l, 1002 (2013)

    Google Scholar 

  35. V.J. Law, Microwave near-field plasma probe. Vacuum 51(3), 463–468 (1998)

    Article  ADS  Google Scholar 

  36. M. Leconte, Statistical study of magnetron patents in the early years of electronics between 1920 and 1945; heuristic focusing around the discovery of the cavity magnetron, in Proceedings of IEEE CAVMAG 2010, pp. 11–16 (2010). https://doi.org/10.1109/cavmag.2010.5565570

  37. N.F. Alekseev, D.D. Malairov, I.B. Bensen, Generation of high-power oscillations with a magnetron in the centimeter band. Proc. IRE 32, 136–139 (1944)

    Article  Google Scholar 

  38. J.T. Randall, H.A.H Boot, High frequency electrical oscillator. US 2,542,966 (Issued Feb 20, 1951)

    Google Scholar 

  39. J. Sayers, High frequency electrical oscillator. US 2,546,870 (Issued Mar 27, 1951)

    Google Scholar 

  40. J.T. Lamb, Microwave oven control. US 3,168,637 (Issued Feb 2, 1965)

    Google Scholar 

  41. L. Blok et al., Control systems for regulating the current in a magnetron tube. US 2,302,060 (Issued Jan 31, 1967)

    Google Scholar 

  42. J.R. Mins, Microwave magnetron. US 3,739,225 (Issued Jun 12, 1973)

    Google Scholar 

  43. T. Koinuma, Magnetron. US 3,809,950 (Issued May 7, 1974)

    Google Scholar 

  44. A.E. Feinberg, Power supply circuit for continuous wave magnetron operated by pulse direct current US 3,396,342 (Issued Aug 6, 1968)

    Google Scholar 

  45. J.T. Lamb, Microwave oven defrost circuit. US 3,842,233 (Issued Oct 15, 1974)

    Google Scholar 

  46. S. Nagamoto. Microwave oven supply circuit. US 3,943,317 (Issued Mar 9, 1976)

    Google Scholar 

  47. W.C. Hickman, Magnetron power supply and cathode heater circuit. US 3,392,309 (Issued Jul 9, 1968)

    Google Scholar 

  48. H.F. Chapell, Interlock circuitry for microwave oven. US 3,624,334 (Issued Nov, 1971)

    Google Scholar 

  49. T. Nobue, S. Kusunoki, Microwave oven having controllable frequency microwave power source. US. Patent 4,415,789 (Issued Nov 5, 1983)

    Google Scholar 

  50. S.A. Levie, W.E. Taylor, Magnetron mode detection. US 4,501,767 (Issued Mar 12, 1985)

    Google Scholar 

  51. P.H. Smith, Power control circuitry for magnetron. US 4,620,078 (Issued Oct 18, 1986)

    Google Scholar 

  52. P.H. Smith, T.R. Payne, F. Reising Jr., Filament power compensation for magnetron. US 4,835,353 (Issued May 30, 1989)

    Google Scholar 

  53. C. Daley, R.J. Sweetman, C. Lenny, Magnetron variable power supply with moding prevention. US. 5,571,439 (Issued Nov 5, 1996)

    Google Scholar 

  54. V.N. Tikhonov, D.V. Pugashkin, J.A. Chetokin, Magnetron generator. RU 2,480, 890 (Issued Apr 27, 2013)

    Google Scholar 

  55. J. Smith, Integration of microwave plasma ignition into a multi-fuel engine. Contract No. FA8651-07-1-00082008. http://www.dtic.mil/dtic/index.html (Accessed June 2019)

  56. A. Pagliarani, A.J. Kenyon, N.F. Thornhill, E. Sirisena, K. Lee, V.J. Law, Process harmonic pulling in a RIE plasma-tool. Electr. Lett. 42(2), 120–121 (2006)

    Article  Google Scholar 

  57. V.J. Law, Process induced oscillator frequency pulling and phase noise within plasma systems. Vacuum 82(6), 630–638 (2008)

    Article  ADS  Google Scholar 

  58. S.S.R. Geedipalli, V. Rakesh, A.K. Datta, Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J. Food Eng. 82, 359–368 (2007)

    Article  Google Scholar 

  59. J.D. Raj, S. Birla, K. Pitchai, J. Subbiah, D. Jones, Modeling of microwave heating of a rotating object in domestic oven, in Proceedings of COMSOL conference, Boston, USA (2011)

    Google Scholar 

  60. J.D. Raj, S. Birla, J. Subbiah, S. Shanmugasundaram, S. Dhanasekaran, Modelling coupled rotation and microwave heating of an object in a domestic microwave oven. Inst. J. Eng. Res. Appl. 6(3), 15–18 (2016)

    Google Scholar 

  61. R. Singh, A.L.L. Jarvis, Microwave plasma enhanced chemical vapour deposition growth of carbon nanostructures. S. Afr. J. Sci. 106(5-6), 4 (2010)

    Google Scholar 

  62. A.D. MacDonald, S.C. Brown, High frequency gas discharge breakdown in hydrogen. Phys. Rev. 76, 1634–1639 (1949)

    Article  ADS  Google Scholar 

  63. M.A. Biondi, Diffusion cooling of electrons in ionized gases. Phys. Rev. 93, 1136–1140 (1954)

    Article  ADS  Google Scholar 

  64. L. Thomas, J.L. Jauberteau, I. Jauberteau, J. Aubreton, J. Catherinot, Characterization of argon-hydrogen microwave plasma discharge using a atomic hydrogen source. Effect of hydrogen dilution on atomic hydrogen production. Plasma Chem. Plasma Process. 17(2), 193–205 (1997)

    Article  Google Scholar 

  65. R. Bajpai, L. Rapoport, K. Amsalem, H.D. Wagner, Rapid growth of onion-like carbon nanospheres in a microwave oven. Crst. Eng. Comm. 18, 230–239 (2016)

    Article  Google Scholar 

  66. C. Pakpum, k Kanchiang, Fabrication of DLC nanoparticle clusters by μ-wave oven based plasma reactor with acetylene diluted in air precursor. Appl. Surf. Sci. 458, 100–110 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research supported of Enterprise Ireland through the Irish Composites Centre (IComp). The Authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Law, V.J., Dowling, D.P. (2020). Microwave Oven Plasma Reactor Moding and Its Detection. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_14

Download citation

Publish with us

Policies and ethics