Skip to main content

Active Nanoobjects, Neutrino and Higgs Boson in a Fractal Models of the Universe

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Theoretically the relationships of the main parameters of active nanoobjects with the Higgs boson and the Higgs field in a fractal models of the Universe are investigated. Neutrino, nanoparticles, atomic defects, quantum dots can be as active nanoobjects. The neutrino is characterized by the phenomenon of hysteresis. The estimation of the neutrino rest mass is obtained. Using the example of a silica nanoparticle, trapped in an optical trap and placed in a vacuum, estimates of the limiting frequency of rotation of a particle in a laser field with circular polarization and the size of the nanoparticle are obtained. Using the example of atomic defects in boron nitride nanotubes, we obtained estimates of the wavelengths of quantum emission of separate photons. Super-nonradiative states of physical fields are investigated. The properties of nanoparticles depend on pressure, state of physical vacuum and cosmological parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers. World Scientific Publishing Company (2006)

    Google Scholar 

  2. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)

    Article  ADS  Google Scholar 

  3. Y.S. Kivshar, N.N. Rozanov (Eds.), Nonlinearities in Periodic Structures and Metamaterials (Fizmatlit, Moscow, 2014)

    Google Scholar 

  4. V.V. Samartsev, V.G. Nikiforov, Femtosecond Laser Spectroscopy, ed. by M. Trovant (2017)

    Google Scholar 

  5. R. Reimann, M. Doderer, E. Hebestreit et al., GHz rotation of an optically trapped nanoparticle in vacuum. arXiv:1803.11160v2 [physics.optics] 21 Jul 2018, 5 p

  6. J. Ahn, Z. Xu, J. Bang et al., Stable emission and fast optical modulation of quantum emitters in boron nitride nanotubes. arXiv:1806.06146v1 [quant-ph] 15 Jun 2018, 4 p

  7. V.S. Abramov, Active nanoelements with variable parameters in fractal quantum systems. Bull. Rus. Acad. Sci. Phys. 82(8), 1062–1067 (2018)

    Article  ADS  Google Scholar 

  8. V. Abramov, Higgs field and cosmological parameters in the fractal quantum system, in XI international symposium on photon echo and coherent spectroscopy (PECS-2017). EPJ Web Conf., vol. 161, no. 02001, 2 p (2017)

    Article  Google Scholar 

  9. V.S. Abramov, Cosmological parameters and Higgs boson in a fractal quantum system. CMSIM J. 4, 441–455 (2017)

    MathSciNet  Google Scholar 

  10. V.S. Abramov, Anisotropic model and transient signals from binary cosmological objects: black holes, neutron stars. Bull. Donetsk Nat. Univ. A, 1, 55–68 (2018)

    Google Scholar 

  11. V.S. Abramov, Superradiance of gravitational waves, relic photons from binary black holes, neutron stars. Bull. Rus. Acad. Sci. Phys. 83(3), 364–369 (2019)

    Article  ADS  Google Scholar 

  12. V.S. Abramov, Gravitational waves, relic photons and Higgs boson in a fractal models of the Universe, in “11th Chaotic Modeling and Simulation International Conference”. Springer Proceedings in Complexity, ed. by C.H. Skiadas, I. Lubashevsky (Springer Nature Switzerland AG, 2019), pp. 1–14

    Google Scholar 

  13. D. Hooper, The empirical case for 10-GeV dark matter. Dark Universe 1, 1–23 (2012)

    Article  Google Scholar 

  14. P.K. Suh, Dark matter and energy in the universe of symmetric physics. IJARPS 5, 19–34 (2018)

    Google Scholar 

  15. O.P. Abramova, A.V. Abramov, Attractors and deformation field in the coupled fractal multilayer nanosystem. CMSIM J. 2, 169–179 (2017)

    Google Scholar 

  16. O.P. Abramova, Mutual influence of attractors and separate stochastic processes in a coupled fractal structures. Bull. Donetsk Nat. Univ. A, 1, 50–60 (2017)

    Google Scholar 

  17. O.P. Abramova, A.V. Abramov, Effect of ordering of displacement fields operators of separate quantum dots, elliptical cylinders on the deformation field of coupled fractal structures, in “11th Chaotic Modeling and Simulation International Conference”. Springer Proceedings in Complexity, ed. by C.H. Skiadas, I. Lubashevsky (Springer Nature Switzerland AG, 2019), pp. 15–27

    Google Scholar 

  18. R.H. Dicke, Coherent in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954)

    Article  ADS  Google Scholar 

  19. R. Bonifacio, P. Schwendimann, F. Haake, Quantum statistical theory of superradiance I. Phys. Rev. A 4(1), 302–313 (1971)

    Article  ADS  Google Scholar 

  20. R. Bonifacio, P. Schwendimann, F. Haake, Quantum statistical theory of superradiance II. Phys. Rev. A 4(3), 854–864 (1971)

    Article  ADS  Google Scholar 

  21. Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81(8), 1562–1567 (1998)

    Article  ADS  Google Scholar 

  22. Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89(1(011301)), 1–6 (2002)

    Google Scholar 

  23. R.M. Barnett et al., Review of particle physics. Phys. Rev. D 54, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Carroll, The Particle at the End of the Universe. Publ. by Dutton, New York (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy S. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abramov, V.S. (2020). Active Nanoobjects, Neutrino and Higgs Boson in a Fractal Models of the Universe. In: Skiadas, C., Dimotikalis, Y. (eds) 12th Chaotic Modeling and Simulation International Conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-39515-5_1

Download citation

Publish with us

Policies and ethics