Skip to main content

Terrain-Like Graphs: PTASs for Guarding Weakly-Visible Polygons and Terrains

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11926))

Included in the following conference series:

Abstract

A graph \(G = (V,E)\) is terrain-like if one can assign a unique integer from the range [1..|V|] to each vertex in V, such that, if both \(\{i,k\}\) and \(\{j,l\}\) are in E, for any \(i< j< k < l\), then so is \(\{i,l\}\). We present a local-search-based PTAS for minimum dominating set in terrain-like graphs. Then, we observe that, besides the visibility graphs of x-monotone terrains which are terrain-like, so are the visibility graphs of weakly-visible polygons and weakly-visible terrains, immediately implying a PTAS for guarding the vertices of such a polygon or terrain from its vertices. We also present PTASs for continuously guarding the boundary of a WV-polygon or WV-terrain, either from its vertices, or, for a WV-terrain, from arbitrary points on the terrain. Finally, we compare between terrain-like graphs and non-jumping graphs, and also observe that both families admit PTASs for maximum independent set.

M. J. Katz—Supported by grant 1884/16 from the Israel Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A.R., et al.: L-graphs and monotone L-graphs. arXiv:1703.01544 (2017)

  2. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating dominating set on intersection graphs of rectangles and L-frames. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, 27–31 August 2018, Liverpool, UK, pp. 37:1–37:15 (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.37

  3. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5D terrain guarding. SIAM J. Comput. 36(6), 1631–1647 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bhattacharya, P., Ghosh, S.K., Pal, S.: Constant approximation algorithms for guarding simple polygons using vertex guards. arXiv:1712.05492 (2017)

  5. Bhattacharya, P., Ghosh, S.K., Roy, B.: Approximability of guarding weak visibility polygons. Discrete Appl. Math. 228, 109–129 (2017)

    Article  MathSciNet  Google Scholar 

  6. Catanzaro, D., et al.: Max point-tolerance graphs. Discrete Appl. Math. 216, 84–97 (2017). https://doi.org/10.1016/j.dam.2015.08.019

    Article  MathSciNet  Google Scholar 

  7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  8. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)

    Article  MathSciNet  Google Scholar 

  9. Correa, J.R., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete Comput. Geom. 53(2), 344–365 (2015). https://doi.org/10.1007/s00454-014-9661-y

    Article  MathSciNet  Google Scholar 

  10. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  Google Scholar 

  11. Elbassioni, K., Krohn, E., Matijević, D., Mestre, J., Ševerdija, D.: Improved approximations for guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–463 (2011)

    Article  MathSciNet  Google Scholar 

  12. Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain guarding problem: discretization, optimal solutions, and PTAS. J. Comput. Geom. 7(1), 256–284 (2016). http://jocg.org/index.php/jocg/article/view/242

  13. Ghosh, S.K., Maheshwari, A., Pal, S.P., Saluja, S., Madhavan, C.E.V.: Characterizing and recognizing weak visibility polygons. Comput. Geom. 3, 213–233 (1993). https://doi.org/10.1016/0925-7721(93)90010-4

    Article  MathSciNet  Google Scholar 

  14. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local search. J. Comput. Geom. 5(1), 168–178 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 243–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_21

    Chapter  MATH  Google Scholar 

  16. King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_58

    Chapter  Google Scholar 

  17. King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM J. Comput. 40(5), 1316–1339 (2011). https://doi.org/10.1137/100791506

    Article  MathSciNet  Google Scholar 

  18. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009)

    Google Scholar 

  19. Soto, M., Caro, C.T.: \(p\)-box: a new graph model. Discrete Math. Theoret. Comput. Sci. 17(1), 169–186 (2015). http://dmtcs.episciences.org/2121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stav Ashur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashur, S., Filtser, O., Katz, M.J., Saban, R. (2020). Terrain-Like Graphs: PTASs for Guarding Weakly-Visible Polygons and Terrains. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_1

Download citation

Publish with us

Policies and ethics