Skip to main content

Complexity Theory and Dynamic Characteristics of Cognitive Processes

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2019)

Abstract

The features of modeling of the cognitive component of social and humanitarian systems have been considered. An example of using entropy multiscale, multifractal, recurrence and network complexity measures has shown that these and other synergetic models and methods allow us to correctly describe the quantitative differences of cognitive systems. The cognitive process is proposed to be regarded as a separate implementation of an individual cognitive trajectory, which can be represented as a time series and to investigate its static and dynamic features by the methods of complexity theory. Prognostic possibilities of the complex systems theory will allow to correct the corresponding pedagogical technologies. It has been proposed to track and quantitatively describe the cognitive trajectory using specially transformed computer games which can be used to test the processual characteristics of thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutten, N., Van Joolingen, R., Van der Veen, J.T.: The learning effects of computer simulations in science education. Comput. Educ. 58(1), 136–153 (2012)

    Article  Google Scholar 

  2. Lamb, R., Premo, J.: Computational modeling of teaching and learning through application of evolutionary algorithms. Computation 3, 427–443 (2015)

    Article  Google Scholar 

  3. Mayor, J., Gomez, P.: Computational Models of Cognitive Processes: Proceedings of the 13th Neural Computation and Psychology Workshop (NCPW13). World Scientific Publishing Co., Singapore (2014)

    Book  Google Scholar 

  4. Nikolis, G., Prigogine, I.: Exploring Complexity: An Introduction. W. H. Freeman and Company, New York (1989)

    Google Scholar 

  5. Kapitsa, S.P., Kurdyumov, S.P., Malinetsky, G.G.: Sinergetika i prognozyi buduschego (Synergetics and future forecasts). URSS, Moscow (2003)

    Google Scholar 

  6. Arnold, V.I.: Matematika i matematicheskoe obrazovanie v sovremennom mire (Math and math education in the modern world). Matematicheskoe obrazovanie 2, 109–112 (1997)

    Google Scholar 

  7. Harasim, L.: Shift happens: online education as a new paradigm in learning. Internet High. Educ. 3(1–2), 41–61 (2000)

    Article  Google Scholar 

  8. Goh, W.P., Kwek, D., Hogan, D., Cheong, S.A.: Complex network analysis of teaching. EPJ Data Sci. (2014). https://doi.org/10.1140/epjds/s13688-014-0034-9

    Article  Google Scholar 

  9. The Future of Jobs Report 2018. http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf. Accessed 28 Nov 2019

  10. Soloviev, V.M., Serdyuk, O.A., Danilchuk, G.B.: Modelyuvannya skladnih system (Complex systems modeling). Publisher Vovchok O.Yu, Cherkasy (2016)

    Google Scholar 

  11. Hausdorff, J., Zemany, L., Peng, C.-K., Goldberger, A.L.: Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 86(3), 1040–1047 (1999)

    Article  Google Scholar 

  12. Delignieres, D., Torrex, K.: Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J. Appl. Physiol. 106, 1272–1279 (2009)

    Article  Google Scholar 

  13. Van Rooij, M.M.J.W., Nash, B.A., Rajaraman, S., Holden, J.G.: A fractal approach to dynamic inference and distribution analysis. Front. Physiol. 4(1), 1–16 (2013)

    Google Scholar 

  14. Ausloos, M.: Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Phys. Rev. E 86(3), 031108 (2012). https://doi.org/10.1103/PhysRevE.86.031108

    Article  Google Scholar 

  15. Liu, X.F., Tse, C.K., Small, M.: Complex network structure of musical compositions: algorithmic generation of appealing music. Physica A 389, 126–132 (2010)

    Article  Google Scholar 

  16. CompEngine. A self-organizing database of time-series data. http://www.comp-engine.org. Accessed 28 Nov 2019

  17. Schmid, U., Ragni, M., Gonzalez, C., Funke, J.: The challenge of complexity for cognitive systems. Cogn. Syst. Res. 12, 211–218 (2011)

    Article  Google Scholar 

  18. Bentz, C., Alikaniotis, D., Cysouw, M., Ferrer-i-Cancho, R.: The entropy of words-learnability and expressivity across more than 1000 languages. Entropy 19(6), 275–279 (2017)

    Article  Google Scholar 

  19. Hernandez-Gomez, C., Basurdo-Flores, R., Obregon-Quintana, B., Guzman-Vargas, L.: Evaluating the irregularity of natural languages. Entropy 19, 521–621 (2017). https://doi.org/10.3390/e19100521

    Article  Google Scholar 

  20. Keshmiri, S., Sumioka, H., Yamazaki, R., Ishiguro, H.: Multiscale entropy quantifies the differential effect of the medium embodiment on older adults prefrontal cortex during the story comprehension: a comparative analysis. Entropy 21, 199–215 (2019)

    Article  Google Scholar 

  21. Wu, M., Liao, L., Luo, X., et al.: Children development using gait signal dynamics parameters and ensemble learning algorithms. BioMed. Res. Int. 2016, 8 pages (2016). https://doi.org/10.1155/2016/9246280. Article ID 9246280

    Google Scholar 

  22. Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., Sornette, D.: Multifractal analysis of financial markets. Physics Reports (2018). arXiv:1805.04750v1 [q-fin.ST]

  23. Wijnants, M.L: A review of theoretical perspectives in cognitive science on the presence of 1/f scaling in coordinated physiological and cognitive processes. J. Nonlinear Dyn. 2014, 17 pages (2014). https://doi.org/10.1155/2014/962043. Article ID 962043

    Article  Google Scholar 

  24. Fan, C., Guo, J.-L., Zha, Y.-L.: Fractal analysis on human behaviors dynamics. Physica A: Stat. Mech. Appl. 391(24), 6617–6625 (2012)

    Article  Google Scholar 

  25. Donner, R.V., et al.: Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurc. Chaos 21(4), 1019–1046. https://doi.org/10.1142/s0218127411029021

    Article  MathSciNet  MATH  Google Scholar 

  26. Webber, C.L., Ioana, C., Marwan, N. (eds.): Recurrence Plots and Their Quantifications: Expanding Horizons. SPP, vol. 180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29922-8

    Book  MATH  Google Scholar 

  27. Wang, F., Liu, Q., Chen, E., Huang, Z.: Interpretable cognitive diagnosis with neural networks. arXiv:1908.08733v2 [cs.LG]

  28. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Siew, C.S.Q., Wulff, D.U., Beckage, N., Kenett, Y.: Cognitive network science: a review of research on cognition through the lens of network representations, processes, and dynamics, 9 October 2018. https://doi.org/10.31234/osf.io/eu9tr

  30. Lynn, C., Bassett, S.: The physics of brain network structure, function and control. Nat. Rev. Phys. 1, 318–332 (2019)

    Article  Google Scholar 

  31. Chen, H., Liu, H.: How does language change as a lexical network? An investigation based on written Chinese word co-occurrence networks. PLOS One 1–22 (2018). https://doi.org/10.1371/journal.pone.0192545. Accessed 28 Nov 2019

    Article  Google Scholar 

  32. Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  33. Martincic-Ipsic, S., Margan, D., Mestrovic, A.: Multilayer networks of language: a unified framework for structural analysis of linguistic subsystems. Physica A 457, 117–128 (2016)

    Article  Google Scholar 

  34. Torrisi, V., Sabato, M., Iacopo, I., Latora, V.: Based approach to understand correlations between interdisciplinary group dynamics and creative performance. In: Proceedings of the 21st International Conference on Engineering and Product Design Education, Glasgow, 12–13 September 2019. https://doi.org/10.35199/epde2019.24

  35. Jackson, E., Tiede, M., Riley, M., Whalen, D.: Recurrence quantification analysis of sentence-level speech kinematics. J. Speech Lang. Hear. Res. 59, 1315–1326 (2016)

    Article  Google Scholar 

  36. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In: Ermolayev, V., et al. (eds.) Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, 14–17 May 2018. CEUR Workshop Proceedings, vol. 2014, pp. 116–127. http://ceur-ws.org/Vol-2104/paper_175.pdf. Accessed 28 Nov 2019

  37. Soloviev, V.N., Belinskiy, A.: Complex systems theory and crashes of cryptocurrency market. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) ICTERI 2018. CCIS, vol. 1007, pp. 276–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13929-2_14

    Chapter  Google Scholar 

  38. Soloviev, V., Belinskij, A., Solovieva, V.: Entropy analysis of crisis phenomena for DJIA index. In: Ermolayev, V., et al. (eds.) Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, 12–15 June 2019. CEUR Workshop Proceedings, vol. 2393, pp. 434–449. http://ceur-ws.org/Vol-2393/paper_375.pdf. Accessed 28 Nov 2019

  39. Soloviev, V., Moiseienko, N., Tarasova, O.: Modeling of cognitive process using complexity theory methods. In: Ermolayev, V., et al. (eds.) Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, 12–15 June 2019. CEUR Workshop Proceedings, vol. 2393, pp. 905–918. http://ceur-ws.org/Vol-2393/paper_356.pdf. Accessed 28 Nov 2019

  40. Lindley, C., Sennersten, C., Holopainen, J., IJsselsteijn, W.A., Niedenthal, S., Ravaja, N.: Workshop on the cognitive science of games and gameplay. In: CogSci 2006, 2671 (2006)

    Google Scholar 

  41. Rebetez, C., Bétrancourt, M.: Video game research in cognitive and educational sciences. Cogn. Brain Behav. 1(1), 131–142 (2007). ISSN 1224–8398

    Google Scholar 

  42. Chabris, C.: Six suggestions for research on games in cognitive science. Top. Cogn. Sci. 9, 497–509 (2017). https://doi.org/10.1111/tops.12267

    Article  Google Scholar 

  43. Rafferty, A.N., Zaharia, M., Griffiths, T.L.: Optimally Designing Games for Cognitive Science Research. CogSci. (2012)

    Google Scholar 

  44. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Mutifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  45. Yang, Y., Yang, H.J.: Complex network-based time series analysis. Physica A 387, 1381–1386 (2008)

    Article  Google Scholar 

  46. Lacasa, L., Luque, B., Ballesteros, F., et al.: From time series to complex networks: the visibility graph. PNAS 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Aldous, C.R.: Modelling the creative process and cycles of feedback. Creat. Educ. 8, 1860–1877 (2017). https://doi.org/10.4236/ce.2017.812127

    Article  Google Scholar 

  48. Kiv, A.E., Orischenko, V.G., Tavalika, L.D., Holmes, S.: Computer testing of operator’s creative thinking. Comput. Model. New Technol. 4(2), 107–109 (2000)

    Google Scholar 

  49. Kiv, A.E., Orischenko, V.G., Polozovskaya, I.A., Zakharchenko, I.G.: Computer modelling of the learning organization. In: Kidd, P.T., Karwowski, W. (eds.) Advances in Agil Manufacturing, 553–556. IOS Press, Amsterdam (1994)

    Google Scholar 

  50. Pullen, W.: Think Labyrinth! https://www.astrolog.org/labyrnth.htm. Accessed 28 Nov 2019

  51. McClendon, M.S.: The complexity and difficulty of a maze. In: Sarhangi R., Jablan S. (eds.) Proceedings of Bridges 2001. Mathematical connections in art, music, and science, pp. 213–220. Southwestern College Winfield, Kansas (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Moiseienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soloviev, V., Moiseienko, N., Tarasova, O. (2020). Complexity Theory and Dynamic Characteristics of Cognitive Processes. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2019. Communications in Computer and Information Science, vol 1175. Springer, Cham. https://doi.org/10.1007/978-3-030-39459-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39459-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39458-5

  • Online ISBN: 978-3-030-39459-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics