Skip to main content

SPECT and PET of the Brain

  • Chapter
  • First Online:
  • 1423 Accesses

Abstract

In this second edition, we update brain imaging in clinical nuclear medicine. In particular, we highlight recent developments in PET imaging of neurocognitive disorders. Alzheimer’s disease is pathologically characterized by accumulation of two abnormal proteins in the brain, namely, β-amyloid and hyperphosphorylated tau. Several PET radiopharmaceuticals for β-amyloid imaging have recently been approved for clinical use. In many clinical therapeutic trials, β-amyloid PET imaging has also been used to select subjects with β-amyloid pathologies in order to gauge the potential efficacy of anti-amyloid antibody therapies. In addition, several new PET radiopharmaceuticals for tau imaging are undergoing extensive developments, and tau PET imaging is now realistically following a similar path toward that of β-amyloid imaging in its clinical and research usefulness. Furthermore, PET imaging of neurotransmission systems has long been used as a valuable tool for the purpose of clinical diagnosis, research, and drug developments in movement disorders and other neuropsychiatric disorders. Other nuclear medicine brain imaging, such as [18]F-FDG-PET, remains of wide clinical and research use for the evaluation of brain tumors, cerebrovascular diseases, seizure disorders, and other neuropsychiatric diseases, although recent advances in the structural and functional MRI technology are increasingly recognized in the field of brain imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett. 2002;12(3):295–8.

    Article  CAS  PubMed  Google Scholar 

  2. Verhoeff NPLG, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry. 2004;12(6):584–95.

    Google Scholar 

  3. Shin J, Lee S-Y, Kim S-H, Kim Y-B, Cho S-J. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer’s disease. NeuroImage. 2008;43(2):236–44.

    Article  PubMed  Google Scholar 

  4. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108.

    Article  CAS  PubMed  Google Scholar 

  5. Xia C-F, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement. 2013;9(6):666–76.

    Article  PubMed  Google Scholar 

  6. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in alzheimer disease. J Nucl Med. 2016;57(2):208–14.

    Article  PubMed  CAS  Google Scholar 

  7. Kimura Y, Ichise M, Ito H, Shimada H, Ikoma Y, Seki C, et al. PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med. 2015;56(9):1359–65. http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.115.160127doi/10.2967/jnumed.115.160127

    Article  CAS  PubMed  Google Scholar 

  8. Pontecorvo MJ, Devous MD, Navitsky M, Lu M, Salloway S, Schaerf FW, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017;140(3):aww334–763.

    Article  Google Scholar 

  9. Sepulcre J, Grothe MJ, Sabuncu M, Chhatwal J, Schultz AP, Hanseeuw B, et al. Hierarchical organization of tau and amyloid deposits in the cerebral cortex. JAMA Neurol. 2017;74(7):813–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegeneration. 2017;12(1):652–21. http://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-017-0162-3

    Article  CAS  Google Scholar 

  11. Drzezga A. 2017 SNMMI highlights lecture: neuroscience. J Nucl Med. 2017;58(10):9N–15N.

    CAS  PubMed  Google Scholar 

  12. Thal DR, Rüb U, Orantes M, Braak H. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.

    Article  PubMed  Google Scholar 

  13. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41(1):11–8.

    PubMed  Google Scholar 

  15. Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 2011;69(1):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frey KA, Petrou M. Imaging amyloidopathy in Parkinson disease and parkinsonian dementia syndromes. Clin Transl Imaging. 2015;3(1):57–64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hall B, Mak E, Cervenka S, Aigbirhio FI, Rowe JB, O'Brien JT. In vivo tau PET imaging in dementia: pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Res Rev. 2017;36:50–63.

    Article  CAS  PubMed  Google Scholar 

  18. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.

    Google Scholar 

  20. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18) F-FDG PET. J Nucl Med. 2005;46(10):1625–32.

    CAS  PubMed  Google Scholar 

  21. Inui Y, Ito K, Kato T, SEAD-J Study Group. Longer-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter study. J Alzheimers Dis. 2017;60(3):877–87.

    Google Scholar 

  22. Ito K, Fukuyama H, Senda M, Ishii K, Maeda K, Yamamoto Y, et al. Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study. J Alzheimers Dis. 2015;45(2):543–52.

    Article  PubMed  Google Scholar 

  23. Encinas M, de Juan R, Marcos A, Gil P, Barabash A, Fernández C, et al. Regional cerebral blood flow assessed with 99mTc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2003;30(11):1473–80.

    Article  PubMed  Google Scholar 

  24. Huang C, Wahlund L-O, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol. 2002;2(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jack CR, Knopman DS, Wiste HJ, Vemuri P, Gunter JL, Ivnik RJ, et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71(6):765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89(1):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yoshita M, Taki J, Yokoyama K, Noguchi-Shinohara M, Matsumoto Y, Nakajima K, et al. Value of 123I-MIBG radioactivity in the differential diagnosis of DLB from AD. Neurology. 2006;66(12):1850–4.

    Article  CAS  PubMed  Google Scholar 

  28. Ichise M, Kim YJ, Ballinger JR, Vines D, Erami SS, Tanaka F, et al. SPECT imaging of pre- and postsynaptic dopaminergic alterations in L-dopa-untreated PD. Neurology. 1999a;52(6):1206–14.

    Article  CAS  PubMed  Google Scholar 

  29. Ichise M, Kim YJ, Erami SS, Ballinger JR, Vines D, Tanaka F, et al. Functional morphometry of the striatum in Parkinson’s disease on three-dimensional surface display of 123I-beta-CIT SPECT data. J Nucl Med. 1999b;40(4):530–8.

    Google Scholar 

  30. Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [123I] Beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology. 1996;46(1):231–7.

    Article  CAS  PubMed  Google Scholar 

  31. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38(4):589–98.

    Article  CAS  PubMed  Google Scholar 

  32. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.

    Article  CAS  PubMed  Google Scholar 

  33. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

    Article  PubMed  Google Scholar 

  34. Felicio AC, Shih MC, Godeiro-Junior C, Andrade LAF, Bressan RA, Ferraz HB. Molecular imaging studies in Parkinson disease. Neurologist. 2009;15(1):6–16.

    Article  PubMed  Google Scholar 

  35. Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol. 1992;31(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  36. Buck A, Westera G, Sutter M, Albani C, Kung HF, vonSchulthess GK. Iodine-123-IBF SPECT evaluation of extrapyramidal diseases. J Nucl Med. 1995;36(7):1196–200.

    CAS  PubMed  Google Scholar 

  37. Ichise M, Toyama H, Fornazzari L, Ballinger JR, Kirsh JC. Iodine-123-IBZM dopamine D2 receptor and technetium-99m-HMPAO brain perfusion SPECT in the evaluation of patients with and subjects at risk for Huntington’s disease. J Nucl Med. 1993;34(8):1274–81.

    Google Scholar 

  38. Schwarz J, Tatsch K, Arnold G, Gasser T, Trenkwalder C, Kirsch CM, et al. 123I-iodobenzamide-SPECT predicts dopaminergic responsiveness in patients with de novo parkinsonism. Neurology. 1992;42(3 Pt 1):556–61.

    Article  CAS  PubMed  Google Scholar 

  39. van Royen E, Verhoeff NF, Speelman JD, Wolters EC, Kuiper MA, Janssen AG. Multiple system atrophy and progressive supranuclear palsy. Diminished striatal D2 dopamine receptor activity demonstrated by 123I-IBZM single photon emission computed tomography. Arch Neurol. 1993;50(5):513–6.

    Article  CAS  PubMed  Google Scholar 

  40. Plotkin M, Amthauer H, Klaffke S, Kühn A, Lüdemann L, Arnold G, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm Gen Sect. 2005;112(5):677–92.

    Google Scholar 

  41. Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathias CJ, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28(4):547–55.

    Article  CAS  PubMed  Google Scholar 

  42. Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  43. Van Heertum RL, Drocea C, Ichise M, Lobotesis K, Fawwaz RA. Single photon emission CT and positron emission tomography in the evaluation of neurologic disease. Radiol Clin N Am. 2001;39(5):1007–33.

    Article  PubMed  Google Scholar 

  44. Grubb RL, Powers WJ, Derdeyn CP, Adams HP, Clarke WR. The carotid occlusion surgery study. Neurosurg Focus. 2003;14(3):e9.

    Article  PubMed  Google Scholar 

  45. Grubb RL, Powers WJ, Clarke WR, Videena TO, Adams HP, Derdeyn CP, et al. Surgical results of the carotid occlusion surgery study. J Neurosurg. 2013;118(1):25–33.

    Article  PubMed  Google Scholar 

  46. Ricci PE. Imaging of adult brain tumors. Neuroimaging Clin N Am. 1999;9(4):651–69.

    CAS  PubMed  Google Scholar 

  47. van Heertum RL, Greenstein EA, Tikofsky RS. 2-Deoxy-fluorglucose-positron emission tomography imaging of the brain: current clinical applications with emphasis on the dementias. Semin Nucl Med. 2004;34(4):300–12.

    Article  PubMed  Google Scholar 

  48. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    Article  CAS  PubMed  Google Scholar 

  49. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    Google Scholar 

  50. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988;62(6):1074–8.

    Article  CAS  PubMed  Google Scholar 

  51. Di Chiro G. Positron emission tomography using [18F]fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investig Radiol. 1987;22(5):360–71.

    Article  PubMed  Google Scholar 

  52. Kim EE, Chung SK, Haynie TP, Kim CG, Cho BJ, Podoloff DA, et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics. 1992;12(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  53. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.

    Google Scholar 

  54. Lee DH, Gao FQ, Rogers JM, Gulka I, Mackenzie IR, Parrent AG, et al. MR in temporal lobe epilepsy: analysis with pathologic confirmation. Am J Neuroradiol. 1998;19(1):19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Duncan JS. Imaging and epilepsy. Brain. 1997;120(Pt 2):339–77.

    Article  PubMed  Google Scholar 

  56. Devous MD, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998;39(2):285–93.

    PubMed  Google Scholar 

  57. Spencer SS. The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia. 1994;35(Suppl 6):S72–89.

    Article  PubMed  Google Scholar 

  58. Weil S, Noachtar S, Arnold S, Yousry TA, Winkler PA, Tatsch K. Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun. 2001;22(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sarikaya I. PET studies in epilepsy. Am J Nucl Med Mol Imaging. 2015;5(5):416–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kambeitz J, Abi-Dargham A, Kapur S, Howes OD. Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry. 2014;204(6):420–9.

    Article  PubMed  Google Scholar 

  62. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22(9):3708–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirvonen J, van Erp TGM, Huttunen J, Aalto S, Någren K, Huttunen M, et al. Brain dopamine D1 receptors in twins discordant for schizophrenia. Am J Psychiatry. 2006;163(10):1747–53.

    Article  Google Scholar 

  64. Karlsson P, Farde L, Halldin C, Sedvall G. PET study of D1 dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry. 2002;159(5):761–7.

    Article  Google Scholar 

  65. Kosaka J, Takahashi H, Ito H, Takano A, Fujimura Y, Matsumoto R, et al. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci. 2010;86(21–22):814–8.

    Article  CAS  PubMed  Google Scholar 

  66. Okubo Y, Suhara T, Suhara T, Suzuki K, Kobayashi K, Inoue O, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997;385(6617):634–6.

    Article  CAS  PubMed  Google Scholar 

  67. Catafau AM, Searle GE, Bullich S, Gunn RN, Rabiner EA, Herance R, et al. Imaging cortical dopamine D1 receptors using [11C]NNC112 and ketanserin blockade of the 5-HT2A receptors. J Cerebr Blood Flow Metab. 2010;30(5):985–93.

    Article  CAS  Google Scholar 

  68. Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo N-N, et al. In vivo DA D1 receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol. 2007;9(3):117–25.

    Article  PubMed  Google Scholar 

  69. Chen KC, Yang YK, Howes O, Lee IH, Landau S, Yeh TL, et al. Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [99mTc]-TRODAT-1 and a meta-analysis. Schizophr Bull. 2013;39(2):378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laruelle MA, Frankle WG, Narendran R, Kegeles LS, Abi-Dargham A. Mechanism of action of antipsychotic drugs: from dopamine D2 receptor antagonism to glutamate NMDA facilitation. Clin Ther. 2005;27(Suppl A):S16–24.

    Article  CAS  PubMed  Google Scholar 

  71. Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis. 2013;52:49–65.

    Article  CAS  PubMed  Google Scholar 

  72. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162(4):712–25.

    Article  CAS  PubMed  Google Scholar 

  73. Brooks DJ. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRX. 2005;2(2):226–36.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Talbot PS, Laruelle MA. The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol. 2002;12(6):503–11.

    Article  CAS  PubMed  Google Scholar 

  75. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, et al. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry. 2004;161(5):826–35.

    Article  Google Scholar 

  76. Schossberger PF, Touya JJ. Dynamic cisternography in normal dogs and in human beings. Neurology. 1976;26(3):254–60.

    Article  CAS  PubMed  Google Scholar 

  77. Bartelt D, Jordan CE, Strecker EP, James AE. Comparison of ventricular enlargement and radiopharmaceutical retention: a cisternographic-pneumoencephalographic comparison. Radiology. 1975;116(1):111–5.

    Article  CAS  PubMed  Google Scholar 

  78. Thut DP, Kreychman A, Obando JA. 111In-DTPA cisternography with SPECT/CT for the evaluation of normal pressure hydrocephalus. J Nucl Med Technol. 2014;42(1):70–4.

    Article  PubMed  Google Scholar 

  79. Primeau M, Carrier L, Milette PC, Chartrand R, Picard D, Picard M. Spinal cerebrospinal fluid leak demonstrated by radioisotopic cisternography. Clin Nucl Med. 1988;13(10):701–3.

    Article  CAS  PubMed  Google Scholar 

  80. Servadei F, Moscatelli G, Giuliani G, Cremonini AM, Piazza G, Agostini M, et al. Cisternography in combination with single photon emission tomography for the detection of the leakage site in patients with cerebrospinal fluid rhinorrhea: preliminary report. Acta Neurochir. 1998;140(11):1183–9.

    Article  CAS  PubMed  Google Scholar 

  81. Hoch DB. Brain death: a diagnostic dilemma. J Nucl Med. 1992;33(12):2211–3.

    CAS  PubMed  Google Scholar 

  82. Wijdicks EFM, Varelas PN, Gronseth GS, Greer DM. American Academy of Neurology. Evidence-based guideline update: determining brain death in adults: report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2010;74(23):1911–8.

    Article  PubMed  Google Scholar 

  83. Bertagna F, Barozzi O, Puta E, Lucchini S, Paghera B, Savelli G, et al. Residual brain viability, evaluated by 99mTc-ECD SPECT, in patients with suspected brain death and with confounding clinical factors. Nucl Med Commun. 2009;30(10):815–21.

    Article  PubMed  Google Scholar 

  84. Larar GN, Nagel JS. Technetium-99m-HMPAO cerebral perfusion scintigraphy: considerations for timely brain death declaration. J Nucl Med. 1992;33(12):2209–11.

    CAS  PubMed  Google Scholar 

  85. Donohoe KJ, Agrawal G, Frey KA, Gerbaudo VH, Mariani G, Nagel JS, et al. SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol. 2012;40:198–203.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix

Radiopharmaceutical Abbreviations

[11C]PIB (Pittsburg Compound B): 2-(4′-[11C]methylaminophenyl)-6-hydroxybenzothiazole

[18F]flutemetamol: 2-[3-(18F)fluoranyl-4-(methylamino)phenyl]-1,3-benzothiazol-6-ol

[18F]NAV4694: 2-[2-(18F)fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol

[18F]florbetapir: 4-{(E)-2-[6-(2-{2-[2-(18F)fluoroethoxy]ethoxy}ethoxy)-3-pyridinyl]vinyl}-N-methylaniline

[18F]florbetaben: 4-{(E)-2-[4-(2-{2-[2-(18F)fluoroethoxy]ethoxy}ethoxy)phenyl]vinyl}-N-methylaniline

[11C]SB-13: 4-[(E)-2-{4-[(11C)methylamino]phenyl}vinyl]phenol

[18F]FDDNP: 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}-ethylidene)malononitrile

[11C]PBB3: 2-[(1E,3E)-4-[6-([11C]methylamino)pyridin-3-yl]buta-1,3-dienyl]-1,3-benzothiazol-6-ol

[18F]flortaucipir: 7-[6-(18F)fluoro-3-pyridinyl]-5H-pyrido[4,3-b]indole

[18F]THK5351: (2S)-1-(18F)fluoro-3-[2-[6-(methylamino)pyridin-3-yl]quinolin-6-yl]oxypropan-2-ol

[18F]PI-2620: not disclosed

[18F]MK-6240: 6-(18F)fluoro-3-pyrrolo[2,3-c]pyridin-1-ylisoquinolin-5-amine

[18F]PM-PBB3: not disclosed

[18F]FDG: [18F]fludeoxyglucose

[123I]IMP: [123I]iodoamphetamine

[99mTc]ECD: [99mTc]ethylcysteinate dimer

[99mTc]HMPAO: [99mTc]hexamethylpropyleneamine oxime

[123I]MIBG: [123I]metaiodobenzylguanidine

[123I]altropane: 2β-carbomethoxy-3β-(4-fluorophenyl)-N-((E)-3-iodo-prop-2-enyl)tropane

[99mTc]TRODAT-1: ([2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3-)-N2,N2′,S2,S2′]oxo-[1R-(exo-exo)]-99mTc-technetium)

[l23I]FP-CIT or DATSCAN: 123I-N-omega-fluoropropyl- 2beta-carbomethoxy-3beta-(4-iodoph enyl)nortropane

[11C]flumazenil: ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate

[18F]FDOPA: 3,4-dihydroxy-6-18F-fluoro-l-phenylalanine

[11C]DTBZ: [11C]dihydrotetrabenazine

[99mTc]MIBI: [99mTc]sestamibi

[123I]IMT: [123I]iodo-α-methyltyrosine

[11C]MET: [11C]methionine (MET)

[18F]FET: [18F]fluoroethyl-l-tyrosine

[18F]FLT: [18F]fluoro-thymidine

[11C]raclopride: 3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-methoxybenzamide

[123I]IBZM: [123I]iodobenzamide

[11C]FLB 457: ((S)-N-((1-ethyl-2-pyrrolidinyl)methyl)-5-bromo-2,3-dimethoxybenzamide)

[18F]fallypride: N-{[(2S)-1-allyl-2-pyrrolidinyl]methyl}-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide

[11C]NNC112: ((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetra-hydro-lH-3-benzazepine

[11C]SCH23390: R-(+)-8-chIoro-2,3,4,5-tetrahydro-3-methyI-5-phe-nyl-1H-3-benzazepine-7-ol

[11C]WAY-100635: N-(2-(4-(2-methoxyphenyl)-1-piperazi-nyl)ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide

[11C]MDL100,907: (R)-(+)-4-(1-hydroxy-1-(2,3-dimethoxyphenyl)methy1)-N-2-(4-fluorophenylethyl) piperidine

[11C](+)McN5652: (+)trans-l,2,3,5,6,10β-hexahydro-6-14-(methylthio)phenyl]pyrrolo-[2,1-a]-isoquinoline

[11C]DASB: N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine

[18F]altanserin: 3-{2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl}-2-thioxo-2,3-dihydro-4(1H)-quinazolinone

[11C]cocaine: methyl(1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate

[11C]methylphenidate: methyl phenyl(piperidin-2-yl)acetate

[11C]carfentanil: methyl 1-(2-phenylethyl)-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate

[111In] or [99mTc]DTPA: 111In- or 99mTc-diethylenetriamine pentaacetic acid

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kimura, Y., Kato, T., Ito, K., Ichise, M. (2020). SPECT and PET of the Brain. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics