Skip to main content

Radioactive Microspheres

  • Chapter
  • First Online:

Abstract

Microspheres for radioembolisation of liver malignancies can be labelled with different radionuclides such as 90Y, 166Ho, and 188Re. The characteristics of these labelled microspheres are described. In the last decade, most clinical experiences have been obtained with commercial 90Y microspheres. Another special possibility is the application of 166Ho microspheres in addition to visualisation by magnetic resonance imaging. An alternative for in-house preparations are 188Re particles that can be labelled to clinical demands if a 188Wo/188Re generator is available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;60:1552–63.

    CAS  PubMed  Google Scholar 

  2. Harbert J. Nuclear medicine diagnosis and therapy. In: Harbert J, editor. Therapy with intra-arterial radioactive particles. New York: Thieme Medical Publishers, Inc.; 1996. p. 1141–55.

    Google Scholar 

  3. Wunderlich G, Drews A, Kotzerke J. A kit for labeling of [188Re] human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot. 2005;62:915–8.

    CAS  PubMed  Google Scholar 

  4. Wunderlich G, Pinkert J, Stintz M, Kotzerke J. Labeling and biodistribution of different particle materials for radioembolization therapy with 188Re. Appl Radiat Isot. 2005;62:745–50.

    CAS  PubMed  Google Scholar 

  5. Dogliotti AM, Caldarola L, Badellino F, Cavalli A, Calderini P. Endo-arterial regional injection of radioisotopes in the treatment of malignant tumours. Int J Appl Radiat Isot. 1966;17:51–9.

    CAS  PubMed  Google Scholar 

  6. Caldarola L, Badellino F, Cavalli A, et al. Intra-hepatic localisation of P-32-Labelled particles administered by Endoportal and intra-splenic injection. Panminerva Med. 1965;34:176–84.

    Google Scholar 

  7. Caldarola L, Badellino F, Del Fante FM, Roccia L, Del Boca R. The use of P32 in the surgical treatment of malignant oro-maxillofacial tumors. Minerva Stomatol. 1966;15:471–3.

    CAS  PubMed  Google Scholar 

  8. Muller JH, Rossier PH. A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiol. 1951;35:449–68.

    CAS  PubMed  Google Scholar 

  9. Caldarola L, Sosi S, Badellino F, Calderini P, Cavalli A. Preliminary experimental observations on endoarterial introduction of radiating resin microspheres. Int J Appl Radiat Isot. 1968;19:135–9.

    CAS  PubMed  Google Scholar 

  10. Grady ED, Sale WT, Rollins LC. Localization of radioactivity by intravascular injection of large radioactive particles. Ann Surg. 1963;157:97–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim YS, Lafave JW, Maclean LD. The use of radiating microspheres in the treatment of experimental and human malignancy. Surgery. 1962;52:220–31.

    CAS  PubMed  Google Scholar 

  12. Ahmadzadehfar H, Sabet A, Wilhelm K, Biersack HJ, Risse J. Iodine-131-lipiodol therapy in hepatic tumours. Methods. 2011;55:246–52.

    CAS  PubMed  Google Scholar 

  13. Ahmadzadehfar H, Habibi E, Ezziddin S, et al. Survival after 131I-labeled lipiodol therapy for hepatocellular carcinoma. A single-center study based on a long-term follow-up. Nuklearmedizin Nucl Med. 2014;53:46–53.

    CAS  Google Scholar 

  14. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Intervent Radiol. 2006;17:1251–78.

    Google Scholar 

  15. Vente MA, Hobbelink MG, van Het Schip AD, Zonnenberg BA, Nijsen JF. Radionuclide liver cancer therapies: from concept to current clinical status. Anti Cancer Agents Med Chem. 2007;7:441–59.

    CAS  Google Scholar 

  16. Vente MA, Wondergem M, van der Tweel I, et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol. 2009;19:951–9.

    CAS  PubMed  Google Scholar 

  17. Welsh JS, Kennedy AS, Thomadsen B. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2006;66:S62–73.

    CAS  PubMed  Google Scholar 

  18. Gulec SA, Fong Y. Yttrium 90 microsphere selective internal radiation treatment of hepatic colorectal metastases. Arch Surg. 2007;142:675–82.

    CAS  PubMed  Google Scholar 

  19. Kennedy AS, Coldwell D, Nutting C, et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006;65:412–25.

    CAS  PubMed  Google Scholar 

  20. Wunderlich G, Pinkert J, Andreeff M, et al. Preparation and biodistribution of rhenium-188 labeled albumin microspheres B 20: a promising new agent for radiotherapy. Appl Radiat Isot. 2000;52:63–8.

    CAS  PubMed  Google Scholar 

  21. Hafeli UO, Casillas S, Dietz DW, et al. Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys. 1999;44:189–99.

    CAS  PubMed  Google Scholar 

  22. Mantravadi RV, Spigos DG, Tan WS, Felix EL. Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology. 1982;142:783–6.

    CAS  PubMed  Google Scholar 

  23. Bult W, Vente MA, Zonnenberg BA, Van Het Schip AD, Nijsen JF. Microsphere radioembolization of liver malignancies: current developments. Q J Nucl Med Mol Imaging. 2009;53:325–35.

    CAS  PubMed  Google Scholar 

  24. Giammarile F, Bodei L, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.

    CAS  PubMed  Google Scholar 

  25. Avila-Rodriguez MA, Selwyn RG, Hampel JA, et al. Positron-emitting resin microspheres as surrogates of 90Y SIR-spheres: a radiolabeling and stability study. Nucl Med Biol. 2007;34:585–90.

    CAS  PubMed  Google Scholar 

  26. Ahmadzadehfar H, Muckle M, Sabet A, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39(2):309–15.

    CAS  PubMed  Google Scholar 

  27. Wang XD, Yang RJ, Cao XC, Tan J, Li B. Dose delivery estimated by bremsstrahlung imaging and partition model correlated with response following intra-arterial radioembolization with 32P-glass microspheres for the treatment of hepatocellular carcinoma. J Gastrointest Surg. 2010;14:858–66.

    PubMed  Google Scholar 

  28. Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med. 2011;52:72–6.

    PubMed  Google Scholar 

  29. Andrews JC, Walker SC, Ackermann RJ, et al. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.

    CAS  PubMed  Google Scholar 

  30. Gray B. Patent application WO 02/34300 A1. Polymer based radionuclide containing particulate material. 2002.

    Google Scholar 

  31. Hafeli UO, Roberts WK, Pauer GJ, Kraeft SK, Macklis RM. Stability of biodegradable radioactive rhenium (re-186 and re-188) microspheres after neutron-activation. Appl Radiat Isot. 2001;54:869–79.

    CAS  PubMed  Google Scholar 

  32. Rhodes BA, Zolle I, Buchanan JW, Wagner HN Jr. Radioactive albumin microspheres for studies of the pulmonary circulation. Radiology. 1969;92:1453–60.

    CAS  PubMed  Google Scholar 

  33. Wang SJ, Lin WY, Chen MN, et al. Rhenium-188 microspheres: a new radiation synovectomy agent. Nucl Med Commun. 1998;19:427–33.

    CAS  PubMed  Google Scholar 

  34. Wang SJ, Lin WY, Hsieh BT, et al. Rhenium-188 Sulphur colloid as a radiation synovectomy agent. Eur J Nucl Med. 1995;22:505–7.

    CAS  PubMed  Google Scholar 

  35. Knapp FF Jr, Beets AL, Guhlke S, et al. Availability of rhenium-188 from the alumina-based tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Res. 1997;17:1783–95.

    CAS  Google Scholar 

  36. Guhlke S, Beets AL, Oetjen K, et al. Simple new method for effective concentration of 188Re solutions from alumina-based 188W-188Re generator. J Nucl Med. 2000;41:1271–8.

    CAS  PubMed  Google Scholar 

  37. Wunderlich G, Hartmann H, Andreeff M, Kotzerke J. A semi-automated system for concentration of rhenium-188 for radiopharmaceutical applications. Appl Radiat Isot. 2008;66:1876–80.

    CAS  PubMed  Google Scholar 

  38. Liepe K, Brogsitter C, Leonhard J, et al. Feasibility of high activity rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol. 2007;37:942–50.

    PubMed  Google Scholar 

  39. Mumper RJ, Ryo UY, Jay M. Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med. 1991;32:2139–43.

    CAS  PubMed  Google Scholar 

  40. Nijsen JF, van Steenbergen MJ, Kooijman H, et al. Characterization of poly(L-lactic acid) microspheres loaded with holmium acetylacetonate. Biomaterials. 2001;22:3073–81.

    CAS  PubMed  Google Scholar 

  41. Nijsen JF, Zonnenberg BA, Woittiez JR, et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.

    CAS  PubMed  Google Scholar 

  42. Zielhuis SW, Nijsen JF, de Roos R, et al. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application. Int J Pharm. 2006;311:69–74.

    CAS  PubMed  Google Scholar 

  43. Seevinck PR, Seppenwoolde JH, de Wit TC, et al. Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents. Anti Cancer Agents Med Chem. 2007;7:317–34.

    CAS  Google Scholar 

  44. Nijsen JF, Seppenwoolde JH, Havenith T, et al. Liver tumors: MR imaging of radioactive holmium microspheres--phantom and rabbit study. Radiology. 2004;231:491–9.

    PubMed  Google Scholar 

  45. van de Maat GH, Seevinck PR, Elschot M, et al. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur Radiol. 2013;23:827–35.

    PubMed  Google Scholar 

  46. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21.

    PubMed  Google Scholar 

  47. Zolle I, Janoki G. Tc-99m Albumin Macroaggregates. In: Zolle I, editor. Tc-99m pharmaceuticals Berlin. Heidelberg, New York: Springer; 2007. p. 187–93.

    Google Scholar 

  48. Zolle I. Tc-99m albumin microspheres. In: Zolle I, editor. Tc-99m radiopharmaceuticals. Berlin: Springer; 2007. p. 194–202.

    Google Scholar 

  49. Kotzerke J, Andreeff M, Wunderlich G, Wiggermann P, Zophel K. Ventilation-perfusion-lungscintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin Nuclear medicine. 2010;49:203–8.

    CAS  PubMed  Google Scholar 

  50. Wunderlich G, Schiller E, Bergmann R, Pietzsch HJ. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM). Nucl Med Biol. 2010;37:861–7.

    CAS  PubMed  Google Scholar 

  51. Goddu SM, Howell RW, Rao DV. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med. 1994;35:303–16.

    CAS  PubMed  Google Scholar 

  52. Bloomer WD, McLaughlin WH, Lambrecht RM, et al. 211At radiocolloid therapy: further observations and comparison with radiocolloids of 32P, 165Dy, and 90Y. Int J Radiat Oncol Biol Phys. 1984;10:341–8.

    CAS  PubMed  Google Scholar 

  53. Larsen RH, Hoff P, Vergote IB, et al. Alpha-particle radiotherapy with 211At-labeled monodisperse polymer particles, 211At-labeled IgG proteins, and free 211At in a murine intraperitoneal tumor model. Gynecol Oncol. 1995;57:9–15.

    CAS  PubMed  Google Scholar 

  54. Wunderlich G, Henke E, Iwe B, et al. Animal studies on the in vivo stability of 211At-labelled albumin particles. Nucl Med Commun. 1986;7:211–4.

    CAS  PubMed  Google Scholar 

  55. Wunderlich G, Franke WG, Doberenz I, Fischer S. Two ways to establish potential at-211 radiopharmaceuticals. Anticancer Res. 1997;17:1809–13.

    CAS  PubMed  Google Scholar 

  56. Doberenz I, Doberenz W, Wunderlich G, Franke WG, Heidelbach JG, Fischer S. Endoarterial therapy of lingual carcinoma using at-211 labeled HSA microspheres - preliminary clinical experience. NUCCompact. 1990;21:124–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wunderlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wunderlich, G. (2020). Radioactive Microspheres. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics