Skip to main content

Radioimmunotherapy

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

Fighting the tumor cells comes natural to immune cells of our body; no wonder immunotherapy for cancer has become so successful. However, in some cancers, monoclonal antibodies alone do not lead to durable and/or clinically significant response or improvement in overall survival. Conjugation of monoclonal antibodies with beta- or alpha-emitting radionuclides potentiates their cytotoxic efficacy. This increased efficacy is primarily achieved due to the cross fire effect of radiation thereby overcoming the issues with penetration and concentration of large antibodies specifically in bulky tumors. This chapter enlists the major studies performed as of yet and the primary clinical indication of radioimmunotherapy. Although not routinely performed in many centers, it is foreseeable that the future advances in theranostics with radiolabeled probes will see an upsurge of RIT in combination with checkpoint inhibitors to increase the synergy of immune response against cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sausville EA, Longo DL. Principles of cancer treatment: surgery, chemotherapy, and biologic therapy. In: Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL, editors. Harrison’s principles of internal medicine. 16th ed. New York: McGraw Hill; 2005. p. 464–82.

    Google Scholar 

  2. Pressman D, Keighley G. The zone of activities of antibodies as determined by the use of radioactive tracers; the zone of activity of nephrotoxic anti kidney serum. J Immunol. 1948;59:141–6.

    CAS  PubMed  Google Scholar 

  3. Pressman D, Korngold L. The in vivo localisation of anti-Wagner-osteogenic-sarcoma antibodies. Cancer. 1953;6:619–23.

    CAS  PubMed  Google Scholar 

  4. Pressman D, Day ED, Blau M. The use of paired labeling in the determination of tumor-localizing antibodies. Cancer Res. 1957;17:845–50.

    CAS  PubMed  Google Scholar 

  5. Bale WF, Spar IL. Studies directed towards use of antibodies as carriers of radioactivity for therapy. Adv Biol Med Phys. 1957;5:285–356.

    CAS  PubMed  Google Scholar 

  6. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    CAS  PubMed  Google Scholar 

  7. Belitsky P, Ghose T, Aquino J, Norvell ST, Blair AH. Radionuclide imaging of primary renal-cell carcinoma by I-131-labeled antitumor antibody. J Nucl Med. 1978;19:427–30.

    CAS  PubMed  Google Scholar 

  8. Day ED, Lassiter S, Woodhall B, Mahaley JL, Mahaley MS Jr. The localization of radioantibodies in human brain tumors. I. Preliminary exploration. Cancer Res. 1965;25:773–8.

    CAS  PubMed  Google Scholar 

  9. Badger CC, Anasetti C, Davis J, Bernstein ID. Treatment of malignancy with unmodified antibody. Pathol Immunopathol Res. 1987;6:419–34.

    CAS  PubMed  Google Scholar 

  10. Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J Immunother. 1994;15:42–52.

    CAS  Google Scholar 

  11. Lee J, Fenton BM, Koch CJ, Frelinger JG, Lord EM. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment. Cancer Res. 1998;58:1478–85.

    CAS  PubMed  Google Scholar 

  12. Feldhaus MJ, Siegel RW. Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods. 2004;290:69–80.

    CAS  PubMed  Google Scholar 

  13. Hoogenboom HR, Chames P. Natural and designer binding sites made by phage display technology. Immunol Today. 2000;21:371–8.

    CAS  PubMed  Google Scholar 

  14. Irving RA, Coia G, Roberts A, Nuttall SD, Hudson PJ. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J Immunol Methods. 2001;248:31–45.

    CAS  PubMed  Google Scholar 

  15. Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods. 2004;290:51–67.

    CAS  PubMed  Google Scholar 

  16. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, Abderrahim H, Noguchi M, Smith DH, Zeng Y, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet. 1994;7:13–21.

    CAS  PubMed  Google Scholar 

  17. Jain RK. Tumor physiology and antibody delivery. Front Radiat Ther Oncol. 1990;24:32–46. discussion 64–8

    Google Scholar 

  18. Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, Kuo CC, Mashayekh R, Wymore K, McCabe JG, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature. 1994;368:856–9.

    CAS  PubMed  Google Scholar 

  19. Ruiz-Cabello F, Cabrera T, Lopez-Nevot MA, Garrido F. Impaired surface antigen presentation in tumors: implications for T cell-based immunotherapy. Semin Cancer Biol. 2002;12:15–24.

    CAS  PubMed  Google Scholar 

  20. Saga T, Neumann RD, Heya T, Sato J, Kinuya S, Le N, Paik CH, Weinstein JN. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci U S A. 1995;92:8999–9003.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23:1137–46.

    CAS  PubMed  Google Scholar 

  22. Dixon KL. The radiation biology of radioimmunotherapy. Nucl Med Commun. 2003;24:951–7.

    CAS  PubMed  Google Scholar 

  23. Baum RP, Lorenz M, Senekowitsch R, Albrecht M, Hor G. Clinical results of immunoscintigraphy and radioimmunotherapy. Nuklearmedizin. 1987;26:68–78.

    CAS  PubMed  Google Scholar 

  24. Perkins AC, Baum RP. Immunoscintigraphy and immunotherapy 1988. Report of the 3rd IRIST Meeting, Frankfurt/Main, March 1988. Int J Biol Markers. 1988;3:265–72.

    CAS  PubMed  Google Scholar 

  25. Beierwaltes WH. Radioiodine-labelled compounds previously or currently used for tumour localisation. In: Proceedings of an Advisory Group Meeting on Tumour Localisation with Radioactive Agents. Austria: Panel Proceedings Series. International Atomic Energy Agency Vienna; 1974. p. 47–56.

    Google Scholar 

  26. Borghaei H, Schilder RJ. Safety and efficacy of radioimmunotherapy with yttrium 90 ibritumomab tiuxetan (Zevalin). Semin Nucl Med. 2004;34:4–9.

    PubMed  Google Scholar 

  27. Wahl RL. Tositumomab and (131) therapy in non-Hodgkins lymphoma. J Nucl Med. 2005;46(Suppl):128s–40s.

    CAS  PubMed  Google Scholar 

  28. Goldenberg DM, DeLand F, Kim E, Bennett S, Primus FJ, van Nagell JR, Jr EN, DeSimone P, Rayburn P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med. 1978;298:1384–6.

    CAS  PubMed  Google Scholar 

  29. Order SE, Stillwagon GB, Klein JL, Leichner PK, Siegelman SS, Fishman EK, Ettinger DS, Haulk T, Kopher K, Finney K, et al. Iodine 131 antiferritin, a new treatment modality in hepatoma: a Radiation Therapy Oncology Group study. J Clin Oncol. 1985;3:1573–82.

    CAS  PubMed  Google Scholar 

  30. Order SE, Sleeper AM, Stillwagon GB, Klein JL, Leichner PK. Current status of radioimmunoglobulins in the treatment of human malignancy. Oncology (Williston Park). 1989;3:115–20; discussion 122, 129–30.

    Google Scholar 

  31. Order S, Pajak T, Leibel S, Asbell S, Leichner P, Ettinger D, Stillwagon G, Herpst J, Haulk T, Kopher K, et al. A randomized prospective trial comparing full dose chemotherapy to 131I antiferritin: an RTOG study. Int J Radiat Oncol Biol Phys. 1991;20:953–63.

    CAS  PubMed  Google Scholar 

  32. Primus FJ, Goldenberg DM. Immunological considerations in the use of goat antibodies to carcinoembryonic antigen for the radioimmunodetection of cancer. Cancer Res. 1980;40:2979–83.

    CAS  PubMed  Google Scholar 

  33. Vriesendorp HM, Quadri SM, Wyllie CT, Lai J, Borchardt PE, Harris L, Wucher R, Askew E, Schweichler L. Fractionated radiolabeled antiferritin therapy for patients with recurrent Hodgkin’s disease. Clin Cancer Res. 1999;5:3324s–9s.

    CAS  PubMed  Google Scholar 

  34. Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med. 2002;43:693–713.

    CAS  PubMed  Google Scholar 

  35. Baum RP. At the crossroads: from cancer imaging and therapy using radiolabeled monoclonal antibodies to metabolic tumour imaging with positron emission tomography (PET). Ind J Nucl Med. 1999:51–66.

    Google Scholar 

  36. Behr TM, Goldenberg DM. Improved prospects for cancer therapy with radiolabeled antibody fragments and peptides? J Nucl Med. 1996;37:834–6.

    CAS  PubMed  Google Scholar 

  37. Behr TM, Blumenthal RD, Memtsoudis S, Sharkey RM, Gratz S, Becker W, Goldenberg DM. Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin Cancer Res. 2000;6:4900–7.

    CAS  PubMed  Google Scholar 

  38. Buchegger F, Pfister C, Fournier K, Prevel F, Schreyer M, Carrel S, Mach JP. Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab′)2 fragments. J Clin Invest. 1989;83:1449–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Buchegger F, Pelegrin A, Delaloye B, Bischof-Delaloye A, Mach JP. Iodine-131-labeled MAb F(ab′)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J Nucl Med. 1990;31:1035–44.

    CAS  PubMed  Google Scholar 

  40. Buchegger F, Mach JP, Folli S, Delaloye B, Bischof-Delaloye A, Pelegrin A. Higher efficiency of 131I-labeled anti-carcinoembryonic antigen-monoclonal antibody F(ab′)2 as compared to intact antibodies in radioimmunotherapy of established human colon carcinoma grafted in nude mice. Recent Res Cancer Res. 1996;141:19–35.

    CAS  Google Scholar 

  41. Buchegger F, Allal AS, Roth A, Papazyan JP, Dupertuis Y, Mirimanoff RO, Gillet M, Pelegrin A, Mach JP, Slosman DO. Combined radioimmunotherapy and radiotherapy of liver metastases from colorectal cancer: a feasibility study. Anticancer Res. 2000;20:1889–96.

    CAS  PubMed  Google Scholar 

  42. Juweid ME, Sharkey RM, Behr T, Swayne LC, Dunn R, Siegel J, Goldenberg DM. Radioimmunotherapy of patients with small-volume tumors using iodine-131-labeled anti-CEA monoclonal antibody NP-4 F(ab′)2. J Nucl Med. 1996;37:1504–10.

    CAS  PubMed  Google Scholar 

  43. Larson SM, Carrasquillo JA, Krohn KA, Brown JP, McGuffin RW, Ferens JM, Graham MM, Hill LD, Beaumier PL, Hellstrom KE, et al. Localization of 131I-labeled p97-specific Fab fragments in human melanoma as a basis for radiotherapy. J Clin Invest. 1983;72:2101–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Larson SM, Carrasquillo JA, McGuffin RW, Krohn KA, Ferens JM, Hill LD, Beaumier PL, Reynolds JC, Hellstrom KE, Hellstrom I. Use of I-131 labeled, murine Fab against a high molecular weight antigen of human melanoma: preliminary experience. Radiology. 1985;155:487–92.

    CAS  PubMed  Google Scholar 

  45. Milenic DE. Radioimmunotherapy: designer molecules to potentiate effective therapy. Semin Radiat Oncol. 2000;10:139–55.

    CAS  PubMed  Google Scholar 

  46. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol. 2004;22:701–6.

    CAS  PubMed  Google Scholar 

  47. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003;9:571–9.

    CAS  PubMed  Google Scholar 

  48. McQuarrie SA, Baum RP, Golberg L, Niesen A, Golberg K, Noujaim AA, McEwan AJ. A pharmacokinetic comparison of murine and chimeric forms of the 99mTc-labelled 174H.64 monoclonal antibody. J Nucl Biol Med. 1994;38:140–4.

    CAS  PubMed  Google Scholar 

  49. Meredith RF, Khazaeli MB, Plott WE, et al. Effect of human immune response on repeat course of 131I-chimeric b72.3 antibody therapy. Antibody Immunoconj Radiopharm. 1993;6:39–46.

    Google Scholar 

  50. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nature Biotechnol. 2005;23:1147–57.

    CAS  Google Scholar 

  51. Alvarez RD, Partridge EE, Khazaeli MB, Plott G, Austin M, Kilgore L, Russell CD, Liu T, Grizzle WE, Schlom J, LoBuglio AF, Meredith RF. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol. 1997;65:94–101.

    CAS  PubMed  Google Scholar 

  52. DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. 67Cu-versus 131I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res. 1999;5:533–41.

    CAS  PubMed  Google Scholar 

  53. Hughes OD, Bishop MC, Perkins AC, Wastie ML, Denton G, Price MR, Frier M, Denley H, Rutherford R, Schubiger PA. Targeting superficial bladder cancer by the intravesical administration of copper-67-labeled anti-MUC1 mucin monoclonal antibody C595. J Clin Oncol. 2000;18:363–70.

    CAS  PubMed  Google Scholar 

  54. Jacobs AJ, Fer M, Su FM, Breitz H, Thompson J, Goodgold H, Cain J, Heaps J, Weiden P. A phase I trial of a rhenium 186-labeled monoclonal antibody administered intraperitoneally in ovarian carcinoma: toxicity and clinical response. Obstet Gynecol. 1993;82:586–93.

    CAS  PubMed  Google Scholar 

  55. Meredith RF, Partridge EE, Alvarez RD, Khazaeli MB, Plott G, Russell CD, Wheeler RH, Liu T, Grizzle WE, Schlom J, LoBuglio AF. Intraperitoneal radioimmunotherapy of ovarian cancer with lutetium-177-CC49. J Nucl Med. 1996;37:1491–6.

    CAS  PubMed  Google Scholar 

  56. Seitz U, Neumaier B, Glatting G, Kotzerke J, Bunjes D, Reske SN. Preparation and evaluation of the rhenium-188-labelled anti-NCA antigen monoclonal antibody BW 250/183 for radioimmunotherapy of leukaemia. Eur J Nucl Med. 1999;26:1265–73.

    CAS  PubMed  Google Scholar 

  57. Siegel JA. Revised Nuclear Regulatory Commission regulations for release of patients administered radioactive materials: outpatient iodine-131 anti-B1 therapy. J Nucl Med. 1998;39:28S–33S.

    CAS  PubMed  Google Scholar 

  58. Govindan SV, Shih LB, Goldenberg DM, Sharkey RM, Karacay H, Donnelly JE, Losman MJ, Hansen HJ, Griffiths GL. 90Yttrium-labeled complementarity-determining-region-grafted monoclonal antibodies for radioimmunotherapy: radiolabeling and animal biodistribution studies. Bioconjug Chem. 1998;9:773–82.

    CAS  PubMed  Google Scholar 

  59. Baum RP (Handbook Editor). Therapeutic nuclear medicine. Berlin: Springer; 2014. eBook ISBN: 978-3-540-36719-2; https://doi.org/10.1007/978-3-540-36719-2; Hardcover ISBN: 978-3-540-36718-5 (951 pages).

    Google Scholar 

  60. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, Schottelius M, Mueller D, Klette I, Wester HJ. Lu-177 labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57:1006–13.

    CAS  PubMed  Google Scholar 

  61. Emmett L, Willowson K, Violet J, Shin J, Blanks A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64:52–60.

    PubMed  PubMed Central  Google Scholar 

  62. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, Scheinberg DA. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.

    CAS  PubMed  Google Scholar 

  63. Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, Mehta BM, Finn RD, Larson SM, Scheinberg DA. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46.

    CAS  PubMed  Google Scholar 

  64. Aurlien E, Larsen RH, Kvalheim G, Bruland OS. Demonstration of highly specific toxicity of the alpha-emitting radioimmunoconjugate211At-rituximab against non-Hodgkin’s lymphoma cells. Br J Cancer. 2000;83:1375–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6:1433–55.

    CAS  PubMed  Google Scholar 

  66. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 2006;24:823–34.

    CAS  PubMed  Google Scholar 

  67. Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH. Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med. 2003;44:400–11.

    PubMed  Google Scholar 

  68. Chang CH, Sharkey RM, Rossi EA, Karacay H, McBride W, Hansen HJ, Chatal JF, Barbet J, Goldenberg DM. Molecular advances in pretargeting radioimmunotherapy with bispecific antibodies. Mol Cancer Ther. 2002;1:553–63.

    CAS  PubMed  Google Scholar 

  69. Goodwin DA, Meares CF. Advances in pretargeting biotechnology. Biotechnol Adv. 2001;19:435–50.

    CAS  PubMed  Google Scholar 

  70. Axworthy DB, Reno JM, Hylarides MD, Mallett RW, Theodore LJ, Gustavson LM, Su F, Hobson LJ, Beaumier PL, Fritzberg AR. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A. 2000;97:1802–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharkey RM, Karacay H, Richel H, McBride WJ, Rossi EA, Chang K, Yeldell D, Griffiths GL, Hansen HJ, Goldenberg DM. Optimizing bispecific antibody pretargeting for use in radioimmunotherapy. Clin Cancer Res. 2003;9:3897S–913S.

    CAS  PubMed  Google Scholar 

  72. Le Doussal JM, Martin M, Gautherot E, Delaage M, Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med. 1989;30:1358–66.

    PubMed  Google Scholar 

  73. Axworthy DB, Fritzberg AR, Hylarides MD, et al. Preclinical evaluation of anti-tumor monoclonal antibody/streptavidin conjugate for pretargeted 90Y radioimmunotherapy in a mouse xenograft model. J Immunother. 1994;16:158.

    Google Scholar 

  74. Moro M, Pelagi M, Fulci G, Paganelli G, Dellabona P, Casorati G, Siccardi AG, Corti A. Tumor cell targeting with antibody-avidin complexes and biotinylated tumor necrosis factor alpha. Cancer Res. 1997;57:1922–8.

    CAS  PubMed  Google Scholar 

  75. Waldmann TA. Immunotherapy: past, present and future. Nat Med. 2003;9:269–77.

    CAS  PubMed  Google Scholar 

  76. Casadevall A. Antibody-based therapies as anti-infective agents. Expert Opin Investig Drugs. 1998;7:307–21.

    CAS  PubMed  Google Scholar 

  77. Chinol M, De Cobelli O, Trifiro G, Scardino E, Bartolomei M, Verweij F, Papi S, Matei DV, Paganelli G. Localization of avidin in superficial bladder cancer: a potentially new approach for radionuclide therapy. Eur Urol. 2003;44:556–9.

    CAS  PubMed  Google Scholar 

  78. Paganelli G, Pervez S, Siccardi AG, Rowlinson G, Deleide G, Chiolerio F, Malcovati M, Scassellati GA, Epenetos AA. Intraperitoneal radio-localization of tumors pre-targeted by biotinylated monoclonal antibodies. Int J Cancer. 1990;45:1184–9.

    CAS  PubMed  Google Scholar 

  79. Paganelli G, Magnani P, Zito F, Villa E, Sudati F, Lopalco L, Rossetti C, Malcovati M, Chiolerio F, Seccamani E, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51:5960–6.

    CAS  PubMed  Google Scholar 

  80. Saga T, Weinstein JN, Jeong JM, Heya T, Lee JT, Le N, Paik CH, Sung C, Neumann RD. Two-step targeting of experimental lung metastases with biotinylated antibody and radiolabeled streptavidin. Cancer Res. 1994;54:2160–5.

    CAS  PubMed  Google Scholar 

  81. Yao Z, Zhang M, Kobayashi H, Sakahara H, Nakada H, Yamashina I, Konishi J. Improved targeting of radiolabeled streptavidin in tumors pretargeted with biotinylated monoclonal antibodies through an avidin chase. J Nucl Med. 1995;36:837–41.

    CAS  PubMed  Google Scholar 

  82. He J, Liu G, Gupta S, Zhang Y, Rusckowski M, Hnatowich DJ. Amplification targeting: a modified pretargeting approach with potential for signal amplification – proof of a concept. J Nucl Med. 2004;45:1087–95.

    CAS  PubMed  Google Scholar 

  83. Hnatowich DJ, Virzi F, Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987;28:1294–302.

    CAS  PubMed  Google Scholar 

  84. Chauhan J, Dakshinamurti K. Purification and characterization of human serum biotinidase. J Biol Chem. 1986;261:4268–75.

    CAS  PubMed  Google Scholar 

  85. Goodwin DA, Meares CF, Osen M. Biological properties of biotin-chelate conjugates for pretargeted diagnosis and therapy with the avidin/biotin system. J Nucl Med. 1998;39:1813–8.

    CAS  PubMed  Google Scholar 

  86. Karacay H, Sharkey RM, Govindan SV, McBride WJ, Goldenberg DM, Hansen HJ, Griffiths GL. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Reagent development. Bioconjug Chem. 1997;8:585–94.

    CAS  PubMed  Google Scholar 

  87. Sabatino G, Chinol M, Paganelli G, Papi S, Chelli M, Leone G, Papini AM, De Luca A, Ginanneschi M. A new biotin derivative-DOTA conjugate as a candidate for pretargeted diagnosis and therapy of tumors. J Med Chem. 2003;46:3170–3.

    CAS  PubMed  Google Scholar 

  88. Barbet J, Peltier P, Bardet S, Vuillez JP, Bachelot I, Denet S, Olivier P, Leccia F, Corcuff B, Huglo D, Proye C, Rouvier E, Meyer P, Chatal JF. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39:1172–8.

    CAS  PubMed  Google Scholar 

  89. Bardies M, Bardet S, Faivre-Chauvet A, Peltier P, Douillard JY, Mahe M, Fiche M, Lisbona A, Giacalone F, Meyer P, Gautherot E, Rouvier E, Barbet J, Chatal JF. Bispecific antibody and iodine-131-labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer. J Nucl Med. 1996;37:1853–9.

    CAS  PubMed  Google Scholar 

  90. Breitz HB, Fisher DR, Wessels BW. Marrow toxicity and radiation absorbed dose estimates from rhenium-186-labeled monoclonal antibody. J Nucl Med. 1998;39:1746–51.

    CAS  PubMed  Google Scholar 

  91. Breitz HB, Fisher DR, Goris ML, Knox S, Ratliff B, Murtha AD, Weiden PL. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm. 1999;14:381–95.

    CAS  PubMed  Google Scholar 

  92. Chetanneau A, Barbet J, Peltier P, Le Doussal JM, Gruaz-Guyon A, Bernard AM, Resche I, Rouvier E, Bourguet P, Delaage M, et al. Pretargeted imaging of colorectal cancer recurrences using an 111In-labelled bivalent hapten and a bispecific antibody conjugate. Nucl Med Commun. 1994;15:972–80.

    CAS  PubMed  Google Scholar 

  93. Cremonesi M, Ferrari M, Chinol M, Stabin MG, Grana C, Prisco G, Robertson C, Tosi G, Paganelli G. Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur J Nucl Med. 1999;26:110–20.

    CAS  PubMed  Google Scholar 

  94. Gruaz-Guyon A, Janevik-Ivanovska E, Raguin O, De Labriolle-Vaylet C, Barbet J. Radiolabeled bivalent haptens for tumor immunodetection and radioimmunotherapy. Q J Nucl Med. 2001;45:201–6.

    CAS  PubMed  Google Scholar 

  95. Kalofonos HP, Rusckowski M, Siebecker DA, Sivolapenko GB, Snook D, Lavender JP, Epenetos AA, Hnatowich DJ. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J Nucl Med. 1990;31:1791–6.

    CAS  PubMed  Google Scholar 

  96. Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H, Adams GP, Axworthy D, Gaffigan S, Bryan K, Fisher DR, Colcher D, Horak ID, Weiner LM. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res. 2000;6:406–14.

    CAS  PubMed  Google Scholar 

  97. Kraeber-Bodere F, Bardet S, Hoefnagel CA, Vieira MR, Vuillez JP, Murat A, Ferreira TC, Bardies M, Ferrer L, Resche I, Gautherot E, Rouvier E, Barbet J, Chatal JF. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res. 1999;5:3190s–8s.

    CAS  PubMed  Google Scholar 

  98. Le Doussal JM, Chetanneau A, Gruaz-Guyon A, Martin M, Gautherot E, Lehur PA, Chatal JF, Delaage M, Barbet J. Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTPA dimer to primary colorectal tumors: pharmacokinetics, biodistribution, scintigraphy and immune response. J Nucl Med. 1993;34:1662–71.

    PubMed  Google Scholar 

  99. Magnani P, Paganelli G, Modorati G, Zito F, Songini C, Sudati F, Koch P, Maecke HR, Brancato R, Siccardi AG, Fazio F. Quantitative comparison of direct antibody labeling and tumor pretargeting in uveal melanoma. J Nucl Med. 1996;37:967–71.

    CAS  PubMed  Google Scholar 

  100. Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, Robertson C, Zurrida S, Casadio C, Zoboli S, Siccardi AG, Veronesi U. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med. 1999;26:348–57.

    CAS  PubMed  Google Scholar 

  101. Shen S, Forero A, LoBuglio AF, Breitz H, Khazaeli MB, Fisher DR, Wang W, Meredith RF. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J Nucl Med. 2005;46:642–51.

    CAS  PubMed  Google Scholar 

  102. Stickney DR, Anderson LD, Slater JB, Ahlem CN, Kirk GA, Schweighardt SA, Frincke JM. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991;51:6650–5.

    CAS  PubMed  Google Scholar 

  103. Vuillez JP, Moro D, Brichon PY, Rouvier E, Brambilla E, Barbet J, Peltier P, Meyer P, Sarrazin R, Brambilla C. Two-step immunoscintigraphy for non-small-cell lung cancer staging using a bispecific anti-CEA/anti-indium-DTPA antibody and an indium-111-labeled DTPA dimer. J Nucl Med. 1997;38:507–11.

    CAS  PubMed  Google Scholar 

  104. Vuillez JP, Kraeber-Bodere F, Moro D, Bardies M, Douillard JY, Gautherot E, Rouvier E, Barbet J, Garban F, Moreau P, Chatal JF. Radioimmunotherapy of small cell lung carcinoma with the two-step method using a bispecific anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid (DTPA) antibody and iodine-131 Di-DTPA hapten: results of a phase I/II trial. Clin Cancer Res. 1999;5:3259s–67s.

    CAS  PubMed  Google Scholar 

  105. Breitz HB, Weiden PL, Beaumier PL, Axworthy DB, Seiler C, Su FM, Graves S, Bryan K, Reno JM. Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl Med. 2000;41:131–40.

    CAS  PubMed  Google Scholar 

  106. Kraeber-Bodere F, Faivre-Chauvet A, Ferrer L, Vuillez JP, Brard PY, Rousseau C, Resche I, Devillers A, Laffont S, Bardies M, Chang K, Sharkey RM, Goldenberg DM, Chatal JF, Barbet J. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin Cancer Res. 2003;9:3973S–81S.

    CAS  PubMed  Google Scholar 

  107. Cheal SM, Fung EK, Patel M, Xu H, Guo HF, Zanzonico PB, Wittrup KD MS, Cheung NV, Larson SM. Curative Multicycle Radioimmunotherapy Monitored by Quantitative SPECT/CT-Based Theranostics, Using Bispecific Antibody Pretargeting Strategy in Colorectal Cancer. J Nucl Med. 2017;58(11):1735–42. https://doi.org/10.2967/jnumed.117.193250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheal SM, Xu H, Guo HF, Zanzonico PB, Larson SM, Cheung NK. Preclinical evaluation of multistep targeting of disialoganglioside GD2 using an IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex. Mol Cancer Ther. 2014;13(7):1803–12. https://doi.org/10.1158/1535-7163.MCT-13-0933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cheal SM, Xu H, Guo HF, Patel M, Punzalan B, Fung EK, Lee SG, Bell M, Singh M, Jungbluth AA, Zanzonico PB, Piersigilli A, Larson SM, Cheung NV. Theranostic pretargeted radioimmunotherapy of internalizing solid tumor antigens in human tumor xenografts in mice: Curative treatment of HER2-positive breast carcinoma. Theranostics. 2018;8(18):5106–25. https://doi.org/10.7150/thno.26585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Green DJ, Frayo SL, Lin Y, Hamlin DK, Fisher DR, Frost SH, Kenoyer AL, Hylarides MD, Gopal AK, Gooley TA, Orozco JJ, Till BG, O’Steen S, Orcutt KD, Wilbur DS, Wittrup KD, Press OW. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for b-cell cancers. Cancer Res. 2016;76(22):6669–79. https://doi.org/10.1158/0008-5472.CAN-16-0571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, LeBlanc M, Gaynor ER, Rivkin SE, Fisher RI. A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood. 2003;102:1606–12.

    CAS  PubMed  Google Scholar 

  112. Vose JM, Bierman PJ, Enke C, Hankins J, Bociek G, Lynch JC, Armitage JO. Phase I trial of iodine-131 tositumomab with high-dose chemotherapy and autologous stem-cell transplantation for relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:461–7.

    CAS  PubMed  Google Scholar 

  113. Winter JN. Combining yttrium 90-labeled ibritumomab tiuxetan with high-dose chemotherapy and stem cell support in patients with relapsed non-Hodgkin’s lymphoma. Clin Lymphoma. 2004;5(Suppl 1):S22–6.

    CAS  PubMed  Google Scholar 

  114. Wong JY, Shibata S, Williams LE, Kwok CS, Liu A, Chu DZ, Yamauchi DM, Wilczynski S, Ikle DN, Wu AM, Yazaki PJ, Shively JE, Doroshow JH, Raubitschek AA. A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res. 2003;9:5842–52.

    CAS  PubMed  Google Scholar 

  115. O’Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  116. DeNardo GL, Juweid ME, White CA, Wiseman GA, DeNardo SJ. Role of radiation dosimetry in radioimmunotherapy planning and treatment dosing. Crit Rev Oncol Hematol. 2001;39:203–18.

    CAS  PubMed  Google Scholar 

  117. Juweid M, Sharkey RM, Goldenberg DM. Radioimmunotherapy of non-Hodgkins lymphoma with non-myeloablative doses of radiolabeled monoclonal antibodies. Philadelphia: Harwood Academic; 1999.

    Google Scholar 

  118. Cheson BD. Some like it hot! J Clin Oncol. 2001;19:3908–11.

    CAS  PubMed  Google Scholar 

  119. DeNardo SJ, DeNardo GL, O’Grady LF, Macey DJ, Mills SL, Epstein AL, Peng JS, McGahan JP. Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers. 1987;2:49–53.

    CAS  PubMed  Google Scholar 

  120. DeNardo GL, Lewis JP, DeNardo SJ, O’Grady LF. Effect of Lym-1 radioimmunoconjugate on refractory chronic lymphocytic leukemia. Cancer. 1994;73:1425–32.

    CAS  PubMed  Google Scholar 

  121. DeNardo GL, DeNardo SJ, Goldstein DS, Kroger LA, Lamborn KR, Levy NB, McGahan JP, Salako Q, Shen S, Lewis JP. Maximum-tolerated dose, toxicity, and efficacy of (131)I-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin’s lymphoma. J Clin Oncol. 1998;16:3246–56.

    CAS  PubMed  Google Scholar 

  122. Gelman R, Gelber R, Henderson IC, Coleman CN, Harris JR. Improved methodology for analyzing local and distant recurrence. J Clin Oncol. 1990;8:548–55.

    CAS  PubMed  Google Scholar 

  123. Juweid M, Sharkey RM, Markowitz A, Behr T, Swayne LC, Dunn R, Hansen HJ, Shevitz J, Leung SO, Rubin AD, et al. Treatment of non-Hodgkin’s lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. Cancer Res. 1995;55:5899s–907s.

    CAS  PubMed  Google Scholar 

  124. Juweid ME, Stadtmauer E, Hajjar G, Sharkey RM, Suleiman S, Luger S, Swayne LC, Alavi A, Goldenberg DM. Pharmacokinetics, dosimetry, and initial therapeutic results with 131I- and (111)In-/90Y-labeled humanized LL2 anti-CD22 monoclonal antibody in patients with relapsed, refractory non-Hodgkin’s lymphoma. Clin Cancer Res. 1999;5:3292s–303s.

    CAS  PubMed  Google Scholar 

  125. Kaminski MS, Fig LM, Zasadny KR, Koral KF, Del Rosario RB, Francis IR, Hanson CA, Normolle DP, Mudgett E, Liu CP, et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol. 1992;10:1696–711.

    CAS  PubMed  Google Scholar 

  126. Kaminski MS, Zasadny KR, Francis IR, Fenner MC, Ross CW, Milik AW, Estes J, Tuck M, Regan D, Fisher S, Glenn SD, Wahl RL. Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol. 1996;14:1974–81.

    CAS  PubMed  Google Scholar 

  127. Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, Regan D, Fisher S, Gutierrez J, Kroll S, Stagg R, Tidmarsh G, Wahl RL. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–66.

    CAS  PubMed  Google Scholar 

  128. O’Donnell RT, Shen S, Denardo SJ, Wun T, Kukis DL, Goldstein DS, Denardo GL. A phase I study of 90Y-2IT-BAD-Lym-1 in patients with non-Hodgkin’s lymphoma. Anticancer Res. 2000;20:3647–55.

    PubMed  Google Scholar 

  129. Scheinberg DA, Straus DJ, Yeh SD, Divgi C, Garin-Chesa P, Graham M, Pentlow K, Coit D, Oettgen HF, Old LJ. A phase I toxicity, pharmacology, and dosimetry trial of monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma: effects of tumor burden and antigen expression. J Clin Oncol. 1990;8:792–803.

    CAS  PubMed  Google Scholar 

  130. Vose JM, Colcher D, Gobar L, Bierman PJ, Augustine S, Tempero M, Leichner P, Lynch JC, Goldenberg D, Armitage JO. Phase I/II trial of multiple dose 131Iodine-MAb LL2 (CD22) in patients with recurrent non-Hodgkin’s lymphoma. Leuk Lymphoma. 2000;38:91–101.

    CAS  PubMed  Google Scholar 

  131. Vose JM, Wahl RL, Saleh M, Rohatiner AZ, Knox SJ, Radford JA, Zelenetz AD, Tidmarsh GF, Stagg RJ, Kaminski MS. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18:1316–23.

    CAS  PubMed  Google Scholar 

  132. Weiden PL, Breitz HB, Press O, Appelbaum JW, Bryan JK, Gaffigan S, Stone D, Axworthy D, Fisher D, Reno J. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin’s lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm. 2000;15:15–29.

    CAS  PubMed  Google Scholar 

  133. Wiseman GA, White CA, Witzig TE, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Grillo-Lopez AJ. Radioimmunotherapy of relapsed non-Hodgkin’s lymphoma with zevalin, a 90Y-labeled anti-CD20 monoclonal antibody. Clin Cancer Res. 1999;5:3281s–6s.

    CAS  PubMed  Google Scholar 

  134. Wiseman GA, Gordon LI, Multani PS, Witzig TE, Spies S, Bartlett NL, Schilder RJ, Murray JL, Saleh M, Allen RS, Grillo-Lopez AJ, White CA. Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood. 2002;99:4336–42.

    CAS  PubMed  Google Scholar 

  135. Witzig TE, White CA, Wiseman GA, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Parker E, Grillo-Lopez AJ. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17:3793–803.

    CAS  PubMed  Google Scholar 

  136. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, Cripe L, Wiseman G, Olejnik T, Multani PS, White CA. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–9.

    CAS  PubMed  Google Scholar 

  137. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N, Grillo-Lopez AJ, Multani P, White CA. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    CAS  PubMed  Google Scholar 

  138. Juweid ME, Hajjar G, Stein R, Sharkey RM, Herskovic T, Swayne LC, Suleiman S, Pereira M, Rubin AD, Goldenberg DM. Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14 F(ab)2 anti-carcinoembryonic antigen MAb and AHSCR. J Nucl Med. 2000;41:93–103.

    CAS  PubMed  Google Scholar 

  139. Liu SY, Eary JF, Petersdorf SH, Martin PJ, Maloney DG, Appelbaum FR, Matthews DC, Bush SA, Durack LD, Fisher DR, Gooley TA, Bernstein ID, Press OW. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol. 1998;16:3270–8.

    CAS  PubMed  Google Scholar 

  140. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R, Miller R, Brown S, Nelp WB, Krohn KA, et al. Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol. 1989;7:1027–38.

    CAS  PubMed  Google Scholar 

  141. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Butchko G, Fisher D, Porter B, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med. 1993;329:1219–24.

    CAS  PubMed  Google Scholar 

  142. Press OW, Eary JF, Appelbaum FR, Martin PJ, Nelp WB, Glenn S, Fisher DR, Porter B, Matthews DC, Gooley T, et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet. 1995;346:336–40.

    CAS  PubMed  Google Scholar 

  143. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, Crawford SM, Burgess JM, Petry NA, Butchko GM, et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med. 1993;329:459–65.

    CAS  PubMed  Google Scholar 

  144. Parker BA, Vassos AB, Halpern SE, Miller RA, Hupf H, Amox DG, Simoni JL, Starr RJ, Green MR, Royston I. Radioimmunotherapy of human B-cell lymphoma with 90Y-conjugated anti idiotype monoclonal antibody. Cancer Res. 1990;50:1022s–8s.

    CAS  PubMed  Google Scholar 

  145. Borjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, Castelijns JA, Vosjan MJ, Kummer JA, Leemans CR, Lammertsma AA, van Dongen GA. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006;12:2133–40.

    PubMed  Google Scholar 

  146. Zalutsky MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res. 2006;12:1958–60.

    CAS  PubMed  Google Scholar 

  147. Heskamp S, Raave Ŕ, Boerman O, Rijpkema M, Goncalves V, Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem. 2017;28:2211–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Juweid ME. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med. 2002;43:1507–29.

    CAS  PubMed  Google Scholar 

  149. Armitage JO, Mauch PM, Harris NL, Bierman P. Non-Hodgkin’s lymphoma. Philadelphia: Lippincott, Williams & Wilkins; 2001.

    Google Scholar 

  150. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    PubMed  PubMed Central  Google Scholar 

  151. NCCN Guideline Version 1. 2019 B-Cell lymphomas.

    Google Scholar 

  152. Knox SJ, Goris ML, Trisler K, Negrin R, Davis T, Liles TM, Grillo-Lopez A, Chinn P, Varns C, Ning SC, Fowler S, Deb N, Becker M, Marquez C, Levy R. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res. 1996;2:457–70.

    CAS  PubMed  Google Scholar 

  153. Witzig TE, Gordon LI, Wiseman GA, et al. Reduced dose Zevalin is safe and effective in patients with relapsed or refractory, low grade, follicular or CD20+ transformed B cell non-Hodgkin’s lymphoma (L/F/T NHL) and mild thrombocytopenia. Blood. 2000;96:728a.

    Google Scholar 

  154. Witzig TE, White CA, Flinn IW, et al. Zevalin radioimmunotherapy of rituximab refractory follicular non-Hodgkin’s lymphoma. Blood. 2000;96:507a.

    Google Scholar 

  155. Wagner HN Jr, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM, Lamonica DM, Conti PS. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43:267–72.

    CAS  PubMed  Google Scholar 

  156. Tennvall J, Fischer M, Bischof Delaloye A, Bombardieri E, Bodei L, Giammarile F, Lassmann M, Oyen W, Brans B. EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imag. 2007;34(4):616–22.

    Google Scholar 

  157. Zelenetz AD. Radioimmunotherapy for lymphoma. Curr Opin Oncol. 1999;11:375–80.

    CAS  PubMed  Google Scholar 

  158. Wiseman G, Gordon L, Leigh BR, et al. Safety and efficacy of the Zevalin radioimmunotherapy regimen are not diminished by extending the time interval between rituximab infusion and zevalin injection. Blood. 2000;96:251b.

    Google Scholar 

  159. Konig T, Baum RP, Radtke M, Franke D. HAMA-ELISA medac: a new assay for the quantitation of human anti-mouse antibodies. Clin Lab. 2002;48:207–10.

    CAS  PubMed  Google Scholar 

  160. Davies AJ. Tositumomab and iodine [131I] tositumomab in the management of follicular lymphoma. An oncologist’s view. Q J Nucl Med Mol Imaging. 2004;48:305–16.

    CAS  PubMed  Google Scholar 

  161. Wahl RL, Zasadny KR, Estes J, et al. Single center experience with iodine 131I tositumomab radioimmunotherapy for previously untreated follicular lymphoma (FL). J Nucl Med. 2000;41(Suppl):79.

    Google Scholar 

  162. Gregory SA, Leonard JP, Knox SJ, Zelenetz AD, Armitage JO, Kaminski MS. The iodine I131 tositumomab therapeutic regimen: summary of safety in 995 patients with relapsed/refractory low grade (LG) and transformed LG non-Hodgkin’s lymphoma (NHL). American Society of Clinical Oncology, Annual Meeting Proceedings (post-meeting edition). J Clin Oncol. 2004;22(14S):6732.

    Google Scholar 

  163. Behr TM, Wormann B, Gramatzki M, Riggert J, Gratz S, Behe M, Griesinger F, Sharkey RM, Kolb HJ, Hiddemann W, Goldenberg DM, Becker W. Low- versus high-dose radioimmunotherapy with humanized anti-CD22 or chimeric anti-CD20 antibodies in a broad spectrum of B cell-associated malignancies. Clin Cancer Res. 1999;5:3304s–14s.

    CAS  PubMed  Google Scholar 

  164. Behr TM, Griesinger F, Riggert J, Gratz S, Behe M, Kaufmann CC, Wormann B, Brittinger G, Becker W. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer. 2002;94:1363–72.

    CAS  PubMed  Google Scholar 

  165. Czuczman MS, Straus DJ, Divgi CR, Graham M, Garin-Chesa P, Finn R, Myers J, Old LJ, Larson SM, Scheinberg DA. Phase I dose-escalation trial of iodine 131-labeled monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 1993;11:2021–9.

    CAS  PubMed  Google Scholar 

  166. DeNardo GL, DeNardo SJ, O’Grady LF, Levy NB, Adams GP, Mills SL. Fractionated radioimmunotherapy of B-cell malignancies with 131I-Lym-1. Cancer Res. 1990;50:1014s–6s.

    CAS  PubMed  Google Scholar 

  167. Davis TA, Kaminski MS, Leonard JP, Gregory SA, Wahl RL, Hsu FJ, Wilkinson M, Frankel SR, Serafini A, Zelenetz AD, Kroll S, Coleman M, Levy R, Knox SJ. Results of a randomized study of Bexxar (tositumomab or iodine I-131 tositumomab) versus unlabeled tositumomab in patients with relapsed or refractory low-grade or transformed non-Hodgkin’s lymphoma (NHL). In: Proc Am Soc Hematology; 2001. p. 3503.

    Google Scholar 

  168. Goldenberg DM, Horowitz JA, Sharkey RM, Hall TC, Murthy S, Goldenberg H, Lee RE, Stein R, Siegel JA, Izon DO, et al. Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol. 1991;9:548–64.

    CAS  PubMed  Google Scholar 

  169. Linden O, Tennvall J, Cavallin-Stahl E, Darte L, Garkavij M, Lindner KJ, Ljungberg M, Ohlsson T, Sjogreen K, Wingardh K, Strand SE. Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas. Clin Cancer Res. 1999;5:3287s–91s.

    CAS  PubMed  Google Scholar 

  170. O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, Goldstein DS, Mirick GR, DeNardo SJ. 67Copper-2-iminothiolane-6-[p-(bromoacetamido)benzyl-TETA-Lym-1] for radioimmunotherapy of non-Hodgkin’s lymphoma. Clin Cancer Res. 1999;5:3330s–6s.

    PubMed  Google Scholar 

  171. Scheidhauer K, Schwarz K, von Schilling C, Schmidt B, Wolf I, Peschel C, Schwaiger M. Pradiktion von Remission und ereignisfereim Uberleben nach Radioimmunotherapie (RIT) von Non-Hodgkin’s-Lymphomen. In: 41 Jahrestagung DGN; 2003. p V152 (abstract).

    Google Scholar 

  172. Wiseman GA, Witzig TE. Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm. 2005;20:185–8.

    CAS  PubMed  Google Scholar 

  173. Witzig TE, White CA, Gordon LI, et al. Final results of a randomized controlled study of the Zevalin radioimmunotherapy regimen versus a standard course of rituximab immunotherapy for B-cell NHL. Blood. 2000;96(abstract):3591.

    Google Scholar 

  174. Davis T, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Wahl RL. Long-term results of a randomised trial comparing tositumomab and iodine I131-tositumomab (BEXXAR) with tositumomab alone in patients with relapsed or refractory low-grade (lg) or transformed low grade (t-lg) non-Hodgkin’s lymphoma (NHL). Blood. 2003;102:405a.

    Google Scholar 

  175. Davies AJ, Rohatiner AZ, Howell S, Britton KE, Owens SE, Micallef IN, Deakin DP, Carrington BM, Lawrance JA, Vinnicombe S, Mather SJ, Clayton J, Foley R, Jan H, Kroll S, Harris M, Amess J, Norton AJ, Lister TA, Radford JA. Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2004;22:1469–79.

    CAS  PubMed  Google Scholar 

  176. Zelenetz AD, Saleh M, Vose J, Younes A, Kaminski MS. Patients with transformed low grade follicular lymphoma attain durable responses following outpatient radioimmunotherapy with tositumomab and iodine (131I) tositumomab (Bexxar). Blood. 2002;100:357a.

    Google Scholar 

  177. Horning SJ, Younes A, Lucas J, Podoloff D, Jain V. Rituximab treatment failures: tositumomab and iodine (131I) tositumomab (Bexxar) can produce meaningful durable responses. Blood. 2002;100:357a.

    Google Scholar 

  178. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, Lister TA, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris NL, Armitage JO, Carter W, Hoppe R, Canellos GP. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244.

    CAS  PubMed  Google Scholar 

  179. Leonard JP, Coleman CN, Kostakoglu K, et al. Fludarabine monophosphate followed by iodine 131I tositumomab for untreated low grade and follicular non-Hodgkin’s lymphoma (NHL). Blood. 1999;94(Suppl):90a.

    Google Scholar 

  180. Press OW, Eary JF, Gooley T, Gopal AK, Liu S, Rajendran JG, Maloney DG, Petersdorf S, Bush SA, Durack LD, Martin PJ, Fisher DR, Wood B, Borrow JW, Porter B, Smith JP, Matthews DC, Appelbaum FR, Bernstein ID. A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood. 2000;96:2934–42.

    CAS  PubMed  Google Scholar 

  181. Puronen CE, Cassaday RD, Stevenson PA, et al. Long-Term Follow-Up of 90Y-Ibritumomab Tiuxetan, Fludarabine, and Total Body Irradiation-Based Nonmyeloablative Allogeneic Transplant Conditioning for Persistent High-Risk B Cell Lymphoma. Biol Blood Marrow Transplant. 2018;24:2211–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Corcoran MC, Press OW, Matthews DC, Appelbaum FR, Bernstein ID. The role of radioimmunotherapy in bone marrow transplantation. Curr Opin Hematol. 1996;3:438–45.

    CAS  PubMed  Google Scholar 

  183. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE, Martin PJ, Mitchell D, Press OW, Storb R, Bernstein ID. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94:1237–47.

    CAS  PubMed  Google Scholar 

  184. Jhanwar YS, Divgi C. Current status of therapy of solid tumors. J Nucl Med. 2005;46(Suppl 1):141S–50S.

    PubMed  Google Scholar 

  185. Divgi C. Editorial: what ails solid tumor radioimmunotherapy? Cancer Biother Radiopharm. 2006;21:81–4.

    PubMed  Google Scholar 

  186. Behr TM, Sharkey RM, Juweid ME, Dunn RM, Vagg RC, Ying Z, Zhang CH, Swayne LC, Vardi Y, Siegel JA, Goldenberg DM. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med. 1997;38:858–70.

    CAS  PubMed  Google Scholar 

  187. Behr TM, Salib AL, Liersch T, Behe M, Angerstein C, Blumenthal RD, Fayyazi A, Sharkey RM, Ringe B, Becker H, Wormann B, Hiddemann W, Goldenberg DM, Becker W. Radioimmunotherapy of small volume disease of colorectal cancer metastatic to the liver: preclinical evaluation in comparison to standard chemotherapy and initial results of a phase I clinical study. Clin Cancer Res. 1999;5:3232s–42s.

    CAS  PubMed  Google Scholar 

  188. Behr TM, Liersch T, Greiner-Bechert L, Griesinger F, Behe M, Markus PM, Gratz S, Angerstein C, Brittinger G, Becker H, Goldenberg DM, Becker W. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer. 2002;94:1373–81.

    CAS  PubMed  Google Scholar 

  189. Divgi CR, Scott AM, Dantis L, Capitelli P, Siler K, Hilton S, Finn RD, Kemeny N, Kelsen D, Kostakoglu L, et al. Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. J Nucl Med. 1995;36:586–92.

    CAS  PubMed  Google Scholar 

  190. Meredith RF, Khazaeli MB, Macey DJ, Grizzle WE, Mayo M, Schlom J, Russell CD, LoBuglio AF. Phase II study of interferon-enhanced 131I-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin Cancer Res. 1999;5:3254s–8s.

    CAS  PubMed  Google Scholar 

  191. Meredith RF, Khazaeli MB, Plott WE, Spencer SA, Wheeler RH, Brady LW, Woo DV, LoBuglio AF. Initial clinical evaluation of iodine-125-labeled chimeric 17–1A for metastatic colon cancer. J Nucl Med. 1995;36:2229–33.

    CAS  PubMed  Google Scholar 

  192. Nanus DM, Milowsky MI, Kostakoglu L, Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Bander NH. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol. 2003;170:S84–8. discussion S88–9

    Google Scholar 

  193. Mittal BB, Zimmer MA, Sathiaseelan V, Benson AB 3rd, Mittal RR, Dutta S, Rosen ST, Spies SM, Mettler JM, Groch MW. Phase I/II trial of combined 131I anti-CEA monoclonal antibody and hyperthermia in patients with advanced colorectal adenocarcinoma. Cancer. 1996;78:1861–70.

    CAS  PubMed  Google Scholar 

  194. Welt S, Divgi CR, Kemeny N, Finn RD, Scott AM, Graham M, Germain JS, Richards EC, Larson SM, Oettgen HF, et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1994;12:1561–71.

    CAS  PubMed  Google Scholar 

  195. Welt S, Scott AM, Divgi CR, Kemeny NE, Finn RD, Daghighian F, Germain JS, Richards EC, Larson SM, Old LJ. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1996;14:1787–97.

    CAS  PubMed  Google Scholar 

  196. Ychou M, Pelegrin A, Faurous P, Robert B, Saccavini JC, Guerreau D, Rossi JF, Fabbro M, Buchegger F, Mach JP, Artus JC. Phase-I/II radio-immunotherapy study with iodine-131-labeled anti-CEA monoclonal antibody F6 F(ab′)2 in patients with non-resectable liver metastases from colorectal cancer. Int J Cancer. 1998;75:615–9.

    CAS  PubMed  Google Scholar 

  197. Baum RP, Hertel A, Lorenz M, Schwarz A, Encke A, Hör G. 99mTc-labelled anti-CEA monoclonal antibody for tumour immunoscintigraphy: first clinical results. Nucl Med Commun. 1989;10:345–52.

    CAS  PubMed  Google Scholar 

  198. Behr TM, Sharkey RM, Juweid ME, Dunn RM, Ying Z, Zhang CH, Siegel JA, Goldenberg DM. Variables influencing tumor dosimetry in radioimmunotherapy of CEA-expressing cancers with anti-CEA and antimucin monoclonal antibodies. J Nucl Med. 1997;38:409–18.

    CAS  PubMed  Google Scholar 

  199. Dillman RO. Why event-free survival is better than tumor response or other measures of survival as an endpoint in cancer trials. Cancer Biother Radiopharm. 1996;11:99–104.

    CAS  PubMed  Google Scholar 

  200. Meredith RF, Bueschen AJ, Khazaeli MB, Plott WE, Grizzle WE, Wheeler RH, Schlom J, Russell CD, Liu T, LoBuglio AF. Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med. 1994;35:1017–22.

    CAS  PubMed  Google Scholar 

  201. McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK, Wu K, Pellegrini V, Curcio MJ, Miederer M, Bander NH, Scheinberg DA. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40.

    CAS  PubMed  Google Scholar 

  202. Tagawa ST, Milowsky M, Morris M, Vallabhajosula S, Christos P, Akhtar NH, Osborne J, Goldsmith SJ, Larson S, Taskar NP, Scher HI, Bander NH, Nanus DM. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–91. https://doi.org/10.1158/1078-0432.CCR-13-0231. Epub 2013 May 28

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Tagawa ST, Batra J, Vallabhajosula S, et al. Final results of 2-dose fractionation of 177Lu-J591 for progressive metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2016;34:5022.

    Google Scholar 

  204. Tagawa ST, Whang YE, Kaur G, et al. Phase I trial of docetaxel/prednisone plus fractionated dose radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody 177lu-J591 in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2014;32:5064.

    Google Scholar 

  205. Miyahira AK, Pienta KJ, Morris MJ, Bander NH, Baum RP, Fendler WP, Goeckeler W, Gorin MA, Hennekes H, Pomper MG, Sartor O, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA-directed radionuclide scientific working group. Prostate. 2018;78(11):775–89. https://doi.org/10.1002/pros.23642.

    Article  PubMed  Google Scholar 

  206. Nicholson S, Gooden CS, Hird V, Maraveyas A, Mason P, Lambert HE, Meares CF, Epenetos AA. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: a matched analysis. Oncol Rep. 1998;5:223–6.

    CAS  PubMed  Google Scholar 

  207. Epenetos AA, Munro AJ, Stewart S, Rampling R, Lambert HE, McKenzie CG, Soutter P, Rahemtulla A, Hooker G, Sivolapenko GB, et al. Antibody-guided irradiation of advanced ovarian cancer with intraperitoneally administered radiolabeled monoclonal antibodies. J Clin Oncol. 1987;5:1890–9.

    CAS  PubMed  Google Scholar 

  208. Oltrogge JB, Baum RP, Lema KN, Donnerstag B, Hor G. How to overcome the disturbing effects of human anti-mouse antibodies (HAMA) on in vitro assays. Int J Biol Markers. 1997;12:15–7.

    CAS  PubMed  Google Scholar 

  209. Mobus VJ, Baum RP, Bolle M, Kreienberg R, Noujaim AA, Schultes BC, Nicodemus CF. Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer. Am J Obstet Gynecol. 2003;189:28–36.

    CAS  PubMed  Google Scholar 

  210. Noujaim AA, Schultes BC, Baum RP, Madiyalakan R. Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13 – evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother Radiopharm. 2001;16:187–203.

    CAS  PubMed  Google Scholar 

  211. Schultes BC, Baum RP, Niesen A, Noujaim AA, Madiyalakan R. Anti-idiotype induction therapy: anti-CA125 antibodies (Ab3) mediated tumor killing in patients treated with Ovarex mAb B43.13 (Ab1). Cancer Immunol Immunother. 1998;46:201–12.

    CAS  PubMed  Google Scholar 

  212. Riva P, Franceschi G, Riva N, Casi M, Santimaria M, Adamo M. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med. 2000;27:601–9.

    CAS  PubMed  Google Scholar 

  213. Brady LW, Markoe AM, Woo DV, Rackover MA, Koprowski H, Steplewski Z, Peyster RG. Iodine125 labeled anti-epidermal growth factor receptor-425 in the treatment of malignant astrocytomas. A pilot study. J Neurosurg Sci. 1990;34:243–9.

    CAS  PubMed  Google Scholar 

  214. Kalofonos HP, Pawlikowska TR, Hemingway A, Courtenay-Luck N, Dhokia B, Snook D, Sivolapenko GB, Hooker GR, McKenzie CG, Lavender PJ, et al. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antibodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med. 1989;30:1636–45.

    CAS  PubMed  Google Scholar 

  215. Zalutsky MR, Moseley RP, Benjamin JC, Colapinto EV, Fuller GN, Coakham HP, Bigner DD. Monoclonal antibody and F(ab′)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res. 1990;50:4105–10.

    CAS  PubMed  Google Scholar 

  216. Kemshead JT, Papanastassiou V, Coakham HB, Pizer BL. Monoclonal antibodies in the treatment of central nervous system malignancies. Eur J Cancer. 1992;28:511–3.

    CAS  PubMed  Google Scholar 

  217. Wong JY, Somlo G, Odom-Maryon T, Williams LE, Liu A, Yamauchi D, Wu AM, Yazaki P, Wilczynski S, Shively JE, Forman S, Doroshow JH, Raubitschek AA. Initial clinical experience evaluating Yttrium-90-chimeric T84.66 anticarcinoembryonic antigen antibody and autologous hematopoietic stem cell support in patients with carcinoembryonic antigen-producing metastatic breast cancer. Clin Cancer Res. 1999;5:3224s–31s.

    CAS  PubMed  Google Scholar 

  218. Battula VL, Shi Y, Evans KW, et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012;122:2066–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Martinez C, Hofmann TJ, Marino R, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: anovel surface marker for the identification of MSCs. Blood. 2007;109:4245–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Yanagisawa M, Yoshimura S, Yu RK. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN Neuro. 2011;3.

    Google Scholar 

  221. Cheresh DA, Pierschbacher MD, Herzig MA, et al. Disialogangliosides D2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol. 1986;102:688–96.

    CAS  PubMed  Google Scholar 

  222. Lammie G, Cheung N, Gerald W, et al. Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas—an immunohistochemical study. Int J Oncol. 1993;3:909–15.

    CAS  PubMed  Google Scholar 

  223. Shochat SJ, Abt AB. Schengrund CL.VCN-releasable sialic acid and gangliosides in human neuroblastomas. J Pediatr Surg. 1977;12:413–8.

    CAS  PubMed  Google Scholar 

  224. Croog VJ, Kramer K, Cheung NK, et al. Whole neuraxis irradiation to address central nervous system relapse in high-risk neuroblastoma. Int J Radiat Oncol Biol Phys. 2010;78(3):849–54.

    PubMed  Google Scholar 

  225. Larson SM, Divgi C, Sgouros G, et al. Monoclonal antibodies: basic principles— radioisotope conjugates. In: De Vita VT, Hellman S, Rosenberg SA, editors. Biologic therapy of cancer—principles and practice. Philadelphia: Lippincott; 2000. p. 396–412.

    Google Scholar 

  226. Kramer K, Humm JL, Souweidane MM, et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol. 2007;25:5465–70.

    PubMed  Google Scholar 

  227. Kramer K, Kushner BH, Modak S, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97:409–18.

    PubMed  Google Scholar 

  228. Miederer M, McDevitt MR, Borchardt P, et al. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin Cancer Res. 2004;10:6985–92.

    CAS  PubMed  Google Scholar 

  229. Kletting P, Maaß C, Reske S, Beer AJ, Glatting G. Physiologically based pharmacokinetic modeling is essential in 90Y-labeled anti-CD66 radioimmunotherapy. PLoS One. 2015;10(5):e0127934.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, V., Baum, R.P., Oliva, J.P. (2020). Radioimmunotherapy. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics