Skip to main content

Radionuclide Imaging of Children

  • Chapter
  • First Online:
  • 1369 Accesses

Abstract

Although many types of radionuclide studies are similar in adults and children, there is specific consideration to be aware of in the pediatric population. Careful planning and good communication is essential for acquiring an optimum study. Having the appropriate tools, environment, and enough time is of pivotal importance. In addition, it is important to be aware of the normal variances and appropriate thresholds in order to interpret an activity as abnormal in children as compared with adults. In this chapter we review the common nuclear medicine procedures in children, focusing on the indication of the study, patient preparation, dose of the radioactivity, and the interpretation of the studies. Furthermore, common pediatric protocols are also summarized for the quick review. We hope this chapter is useful for learning the practical information nuclear medicine physicians or radiologists need to know for pediatric cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med. 1998;42(2):93–112.

    CAS  PubMed  Google Scholar 

  2. Gordon I, Piepsz A, Sixt R. Guidelines for standard and diuretic renogram in children; guideline. Eur J Nucl Med Mol Imaging. 2011;38:1175.

    PubMed  Google Scholar 

  3. Shulkin BL, Mandell GA, Cooper JA, et al. Procedure guideline for diuretic renography in children 3.0. J Nucl Med Technol. 2008;36(3):162–8.

    PubMed  Google Scholar 

  4. Chotipanich C, Rubin J, Lin J, Charron M. Clinical follow-up of children with low differential function on diuretic renogram. J Med Assoc Thai. 2007;90(4):754–61.

    PubMed  Google Scholar 

  5. Mandell G, Eggli D, Gilday D, et al. Society of nuclear medicine procedure guideline for renal cortical scintigraphy in children version 3.0. Approved June 20, 2003.

    Google Scholar 

  6. Ajdinovic B, Jaukovic L, Krstic Z, Dopuda M. Impact of micturating cystourethrography and DMSA renal scintigraphy on the investigation scheme in children with urinary tract infection. Ann Nucl Med. 2008;22(8):661–5.

    PubMed  Google Scholar 

  7. Hoberman A, Charron M, Hickey RW, Baskin M, Kearney DH, Wald ER. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med. 2003;348(3):195–202.

    PubMed  Google Scholar 

  8. Lim R. Vesicoureteral reflux and urinary tract infection: evolving practices and current controversies in pediatric imaging. AJR Am J Roentgenol. 2009;192(5):1197–208.

    PubMed  Google Scholar 

  9. Pollet JE, Sharp PF, Smith FW. Radionuclide imaging for vesico-renal reflux using intravenous 99mTc-D.T.P.A. Pediatr Radiol. 1979;8(3):165–7.

    CAS  PubMed  Google Scholar 

  10. Gerhold JP, Klingensmith WC III, Kuni CC, et al. Diagnosis of biliary atresia with radionuclide hepatobiliary imaging. Radiology. 1983;146(2):499–504.

    CAS  PubMed  Google Scholar 

  11. Warrington JC, Charron M. Pediatric gastrointestinal nuclear medicine. Semin Nucl Med. 2007;37(4):269–85.

    PubMed  Google Scholar 

  12. Donohoe KJ, Maurer AH, Ziessman HA, et al. Procedure guideline for adult solid-meal gastric-emptying study 3.0. J Nucl Med Technol. 2009;37(3):196–200.

    PubMed  Google Scholar 

  13. Fawcett HD, Hayden CK, Adams JC, Swischuk LE. How useful is gastroesophageal reflux scintigraphy in suspected childhood aspiration? Pediatr Radiol. 1988;18(4):311–3.

    CAS  PubMed  Google Scholar 

  14. Siegel J, Wu R, Knight L, Zelac R, Stern H, Malmud L. Radiation dose estimates for oral agents used in upper gastrointestinal disease. J Nucl Med. 1983;24:835–37.

    Google Scholar 

  15. Baikie G, South MJ, Reddihough DS, et al. Agreement of aspiration tests using barium videofluoroscopy, salivagram, and milk scan in children with cerebral palsy. Dev Med Child Neurol. 2005;47(2):86–93.

    CAS  PubMed  Google Scholar 

  16. Sonneville A, Ait-Tahar H, Baulieu F, et al. [Value of esophageal scintigraphy in exploration of a gastro-esophageal reflux in a respiratory patient]. Allerg Immunol 2000;32(5):207–208.

    Google Scholar 

  17. Sfakianakis GN, Conway JJ. Detection of ectopic gastric mucosa in Meckel’s diverticulum and in other aberrations by scintigraphy: II. Indications and methods–a 10-year experience. J Nucl Med. 1981;22(8):732–8.

    CAS  PubMed  Google Scholar 

  18. Spottswood SE, Pfluger T, Bartold S, et al. SNMMI and EANM Practice Guideline for meckel diverticulum scintigraphy. J Nucl Med Technol. 2014;42(3):163–9.

    PubMed  Google Scholar 

  19. Vali R, Daneman A, McQuattie S, Shammas A. The value of repeat scintigraphy in patients with a high clinical suspicion for Meckel diverticulum after a negative or equivocal first Meckel scan. Pediatr Radiol. 2015;45:1506–14.

    PubMed  Google Scholar 

  20. Gelfand MJ, Parisi MT, Treves ST, Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52(2):318–22.

    PubMed  Google Scholar 

  21. Lassmann M, Treves ST, EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.

    CAS  PubMed  Google Scholar 

  22. Grant FD. 18F-Fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9(3):287–97.

    PubMed  Google Scholar 

  23. Nadel HR. Pediatric bone scintigraphy update. Semin Nucl Med. 2010;40(1):31–40.

    PubMed  Google Scholar 

  24. De Palma D. Radionuclide studies with bone-seeking radiophamaceuticals in pediatric benign diseases. In: Mansi L, et al., editors. Clinical nuclear medicine in pediatrics. New York, NY: Springer; 2016.

    Google Scholar 

  25. Ma JJ, Kang BK, Treves ST. Pediatric musculoskeletal nuclear medicine. Semin Musculoskelet Radiol. 2007;11(4):322–34.

    PubMed  Google Scholar 

  26. De Palma D, Nadel HR, Bar-Sever Z. Skeletal scintigraphy with SPECT/CT in benign pediatric bone conditions. Clin Transl Imag. 2016;4:191.

    Google Scholar 

  27. Bybel B, Brunken RC, DiFilippo FP, et al. SPECT/CT imaging: clinical utility of an emerging technology. Radiographics. 2008;28(4):1097–113.

    PubMed  Google Scholar 

  28. Treves ST. Skeletal scintigraphy: general considerations. In: Treves ST, editor. Pediatric nuclear medicine and molecular imaging. 4th ed. New York, NY: Springer; 2014.

    Google Scholar 

  29. Faden H, Grossi M. Acute osteomyelitis in children. Reassessment of etiologic agents and their clinical characteristics. Am J Dis Child. 1991;145(1):65–9.

    CAS  PubMed  Google Scholar 

  30. Connolly LP, Drubach SA, Connolly SA, et al. Bone. In: Treves ST, editor. Pediatric nuclear medicine/PET. 3rd ed. New York, NY: Springer; 2007.

    Google Scholar 

  31. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol. 1992;158(1):9–18.

    CAS  PubMed  Google Scholar 

  32. Pennington WT, Mott MP, Thometz JG, et al. Photopenic bone scan osteomyelitis: a clinical perspective. J Pediatr Orthop. 1999;19(6):695–8.

    CAS  PubMed  Google Scholar 

  33. Acikgoz G, Averill L. Chronic recurrent multifocal osteomyelitis: typical patterns of bone involvement in whole-body bone scintigraphy. Nucl Med Commun. 2014;35(10):1097.

    Google Scholar 

  34. Connolly LP, Treves ST. Assessing the limping child with skeletal scintigraphy. J Nucl Med. 1998;39(6):1056–61.

    CAS  PubMed  Google Scholar 

  35. Drubach LA, Connolly LP, D’Hemecourt PA, et al. Assessment of the clinical significance of asymptomatic lower extremity uptake in young athletes. J Nucl Med. 2001;42(2):209–12.

    CAS  PubMed  Google Scholar 

  36. Sty JR, Wells RG, Conway JJ. Spine pain in children. Semin Nucl Med. 1993;23(4):296–320.

    CAS  PubMed  Google Scholar 

  37. Pekindil G, Sarikaya A, Pekindil Y, et al. Lumbosacral transitional vertebral articulation: evaluation by planar and SPECT bone scintigraphy. Nucl Med Commun. 2004;25(1):29–37.

    CAS  PubMed  Google Scholar 

  38. Mandelstam SA, Cook D, Fitzgerald M, et al. Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse. Arch Dis Child. 2003;88(5):387–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Conway JJ, Collins M, Tanz RR, et al. The role of bone scintigraphy in detecting child abuse. Semin Nucl Med. 1993;23(4):321–33.

    CAS  PubMed  Google Scholar 

  40. Drubach LA, Johnston PR, Newton AW, et al. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255(1):173–81.

    PubMed  Google Scholar 

  41. Villani MF, Falappa P, Pizzoferro M, Toniolo RM, Lembo A, Chiapparelli S, Garganese MC. Role of three-phase bone scintigraphy in paediatric osteoid osteoma eligible for radiofrequency ablation. Nucl Med Commun. 2013;34(7):638–44.

    PubMed  Google Scholar 

  42. Zhibin Y, Quanyong L, Libo C, et al. The role of radionuclide bone scintigraphy in fibrous dysplasia of bone. Clin Nucl Med. 2004;29:177–80.

    PubMed  Google Scholar 

  43. Connolly LP, Drubach LA, Treves ST. Pediatric skeletal scintigraphy. In: Henkin RE, Bova D, Dillehay GL, Karesh SM, Halama JR, Wagner RH, editors. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby-Elsevier; 2006. p. 1721–44.

    Google Scholar 

  44. Stauss J, Hahn K, Mann M, De Palma D. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37(8):1621–8.

    PubMed  Google Scholar 

  45. Patocka C, Nemeth J. Pulmonary embolism in pediatrics. J Emerg Med. 2012;42(1):105–16.

    PubMed  Google Scholar 

  46. Buck JR, Connors RH, Coon WW, et al. Pulmonary embolism in children. J Pediatr Surg. 1981;16(3):385–91.

    CAS  PubMed  Google Scholar 

  47. Brandão LR, Labarque V, Diab Y, et al. Pulmonary embolism in children. Semin Thromb Hemost. 2011;37(7):772–85.

    PubMed  Google Scholar 

  48. Hunt JM, Bull TM. Clinical review of pulmonary embolism: diagnosis, prognosis, and treatment. Med Clin North Am. 2011;95(6):1203–22.

    PubMed  Google Scholar 

  49. Stein EG, Haramati LB, Chamarthy M, Sprayregen S, Davitt MM, Freeman LM. Success of a safe and simple algorithm to reduce use of CT pulmonary angiography in the emergency department. AJR Am J Roentgenol. 2010;194(2):392–7.

    PubMed  Google Scholar 

  50. Ciofetta G, Piepsz A, Roca I, et al. Guidelines for lung scintigraphy in children. Eur J Nucl Med Mol Imaging. 2007;34(9):1518–26.

    PubMed  Google Scholar 

  51. Parker JA, Coleman RE, Grady E, et al. SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol. 2012;40(1):57–65.

    PubMed  Google Scholar 

  52. Gottschalk A, Stein PD, Sostman HD, et al. Very low probability interpretation of V/Q lung scans in combination with low probability objective clinical assessment reliably excludes pulmonary embolism: data from PIOPED II. J Nucl Med. 2007;48(9):1411–5.

    PubMed  Google Scholar 

  53. Shammas A, Vali R, Charron M. Pediatric Nuclear Medicine in Acute Care. Semin Nucl Med. 2013;43(2):139–56.

    PubMed  Google Scholar 

  54. Glaser JE, Chamarthy M, Haramati LB, et al. Successful and safe implementation of a trinary interpretation and reporting strategy for V/Q lung scintigraphy. J Nucl Med. 2011;52(10):1508–12.

    PubMed  Google Scholar 

  55. Gelfand MJ, Gruppo RA, Nasser MP. Ventilation-perfusion scintigraphy in children and adolescents is associated with a low rate of indeterminate studies. Clin Nucl Med. 2008;33(9):606–9.

    PubMed  Google Scholar 

  56. Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35(10):934–1940.

    Google Scholar 

  57. Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30(5):B45–50.

    PubMed  Google Scholar 

  58. Kowalsky RJ, Falen SW. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 2nd ed. Washington DC: American Pharmacists Association; 2004.

    Google Scholar 

  59. Lonergan GJ, Schwab CM, Suarez ES, et al. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22(4):911–34.

    PubMed  Google Scholar 

  60. Bombardieri E, Giammarile F, Aktolun C, et al. 131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.

    PubMed  Google Scholar 

  61. Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47(1):31–40.

    CAS  PubMed  Google Scholar 

  62. Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: the role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11(1):14–21.

    CAS  PubMed  Google Scholar 

  63. Zhang L, Vines D, Scollard D, et al. Correlation of somatostatin receptor-2 expression with gallium-68-DOTA-TATE uptake in neuroblastoma xenograft models. Contrast Media Mol Imaging. 2017;2017:9481276.

    PubMed  PubMed Central  Google Scholar 

  64. Barthlen W, Mohnike W, Mohnike K. Techniques in pediatric surgery: congenital hyperinsulinism. Horm Res Paediatr. 2010;74:438–43.

    CAS  PubMed  Google Scholar 

  65. Arnoux JB, de Lonlay P, et al. Congenital hyperinsulinism. Early Hum Dev. 2010;86:287–94.

    CAS  PubMed  Google Scholar 

  66. McAndrew HF, Smith V, et al. Surgical complications of pancreatectomy for persistent hyperinsulinaemic hypoglycaemia of infancy. J Pediatr Surg. 2003;38:13–6. discussion 13–16.

    PubMed  Google Scholar 

  67. McCarville M. PET-CT imaging in pediatric oncology. Cancer Imaging. 2009;9(1):35–43.

    PubMed  PubMed Central  Google Scholar 

  68. Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74(1):256–261.6.

    CAS  PubMed  Google Scholar 

  69. Volker T, Denecke T, Steffen I, Misch D, Schonberger S, Plotkin M, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    PubMed  Google Scholar 

  70. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol. 2013;48(5):295–301.

    CAS  PubMed  Google Scholar 

  71. Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F] FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.

    CAS  PubMed  Google Scholar 

  72. Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to 18F fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.

    PubMed  Google Scholar 

  73. Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.

    PubMed  Google Scholar 

  74. Nihayah S, Shammas A, Vali R, Parra D, Alexander S, Amaral J, Connolly B. Correlation of PET/CT and image-guided biopsies of pediatric malignancies. AJR Am J Roentgenol. 2017;208(3):656–62.

    PubMed  Google Scholar 

  75. Blokhuis GJ, Bleeker-Rovers CP, Diender MG, Oyen WJ, Draaisma JM, de Geus-Oei LF. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression. Eur J Nucl Med Mol Imaging. 2014;41(10):1916–23.

    CAS  PubMed  Google Scholar 

  76. Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics. 2004;24(6):1611–6.

    PubMed  Google Scholar 

  77. Sasaki M, Kuwabara Y, Ichiya Y, et al. Differential diagnosis of thymic tumors using a combination of 11C-methionine PET and FDG PET. J Nucl Med. 1999;40(10):1595–601.

    CAS  PubMed  Google Scholar 

  78. Bemben MG, Massey BH, Bemben DA, et al. Age-related variability in body composition methods for assessment of percent fat and fat-free mass in men aged 20–74 years. Age Ageing. 1998;27(2):147–53.

    CAS  PubMed  Google Scholar 

  79. Delbeke D, Coleman R, Milton J, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. In: SNM guideline. Reston, VA: SNM; 2006.

    Google Scholar 

  80. Nakagawa TA, Ashwal S, Mathur M, et al. Guidelines for the determination of brain death in infants and children: an update of the 1987 Task Force recommendations. Crit Care Med. 2011;39(9):2139–55.

    PubMed  Google Scholar 

  81. Banasiak KJ, Lister G. Brain death in children. Curr Opin Pediatr. 2003;15(3):288–93.

    PubMed  Google Scholar 

  82. Friedman NC, Burt RW. Cerebral perfusion imaging. In: Henkin RE, Bova D, Dillehay GL, et al., editors. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby-Elsevier; 2006.

    Google Scholar 

  83. Donohoe KJ, Agrawal G, Frey KA, et al. SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol. 2012;40(3):198–203.

    PubMed  Google Scholar 

  84. Okuyaz C, Gücüyener K, Karabacak NI, et al. Tc-99m-HMPAO SPECT in the diagnosis of brain death in children. Pediatr Int. 2004;46(6):711–4.

    PubMed  Google Scholar 

  85. Sinha P, Conrad GR. Scintigraphic confirmation of brain death. Semin Nucl Med. 2012;42(1):27–32.

    PubMed  Google Scholar 

  86. Coker SB, Dillehay GL. Radionuclide cerebral imaging for confirmation of brain death in children: the significance of dural sinus activity. Pediatr Neurol. 1986;2(1):43–6.

    CAS  PubMed  Google Scholar 

  87. Wieler H, Marohl K, Kaiser KP, et al. Tc-99m HMPAO cerebral scintigraphy. A reliable, noninvasive method for determination of brain death. Clin Nucl Med. 1993;18:104–9.

    CAS  PubMed  Google Scholar 

  88. Facco E, Zucchetta P, Munari M, Baratto F, et al. 99mTc-HMPAO SPECT in the diagnosis of brain death. Intensive Care Med. 1998;24(9):911–7.

    CAS  PubMed  Google Scholar 

  89. Ashwal S, Schneider S. Brain death in the newborn. Pediatrics. 1989;84(3):429–37.

    CAS  PubMed  Google Scholar 

  90. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis. 2010;5:17. https://doi.org/10.1186/1750-1172-5-17.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Léger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab. 2014;99:363 84.

    PubMed  Google Scholar 

  92. Wassner AJ, Brown RS. Congenital hypothyroidism: recent advances. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):407–12.

    CAS  PubMed  Google Scholar 

  93. Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 Update of the North American Consensus Guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N–8N.

    PubMed  Google Scholar 

  94. Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med. 2017;47(2):135–42.

    PubMed  Google Scholar 

  95. Volkan-Salancı B, Özgen Kıratlı P. Nuclear medicine in thyroid diseases in pediatric and adolescent patients. Mol Imaging Radionucl Ther. 2015;24(2):47–59. https://doi.org/10.4274/mirt.76476.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Vali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vali, R., McQuattie, S., Shammas, A. (2020). Radionuclide Imaging of Children. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics