Skip to main content

PET/CT in Renal, Bladder, and Testicular Cancer

  • Chapter
  • First Online:

Abstract

Medical imaging plays an important role in genitourinary cancer patients. PET/CT has emerged as a very powerful tool in the evaluation of cancer patients. In uro-oncology, functional and molecular imaging with PET/CT is increasingly used in the clinical management of the patients. However, in especially renal and bladder cancer there is a need to study the efficacy of other tracers than 18F-FDG, particularly tracers with only limited renal excretion. Thus, new PET agents are being introduced and tested in these malignancies. This review provides an overview on the latest advances in clinical PET/CT and PET/MRI of renal, bladder, and testicular cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

BC:

Bladder cancer

CAIX:

Carbonic anhydrase 9

CSD:

Cancer-specific death

CT:

Computed tomography

DOTATATE:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-octreotate

DSS:

Disease-specific survival

FDG:

Fluorodeoxyglucose

FLT:

Fluorothymidine

GCT:

Germ cell tumor

hCG:

Human chorionic gonadotropin

LDH:

Lactate dehydrogenase

LN:

Lymph node

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

NPV:

Negative predictive value

NSGCT:

Non-seminomatous germ cell tumor

OS:

Overall survival

PFS:

Progression-free survival

PLND:

Pelvic lymph node dissection

PPV:

Positive predictive value

PSMA:

Prostate-specific membrane antigen

RCC:

Renal cell carcinoma

RECIST:

Response evaluation criteria in solid tumors

SUV:

Standardized uptake value

TLG:

Total lesion glycolysis

References

  1. Sahni VA, Silverman SG. Imaging management of incidentally detected small renal masses. Semin Intervent Radiol. 2014;31:9–19.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caldarella C, Muoio B, Isgro MA, Porfiri E, Treglia G, Giovanella L. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol Oncol. 2014;48:219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gofrit ON, Orevi M. Diagnostic challenges of kidney cancer: a systematic review of the role of positron emission tomography-computerized tomography. J Urol. 2016;196:648–57.

    Article  PubMed  Google Scholar 

  4. Makis W, Ciarallo A, Rakheja R, Probst S, Hickeson M, Rush C, Novales-Diaz JA, Derbekyan V, Stern J, Lisbona R. Spectrum of malignant renal and urinary bladder tumors on 18F-FDG PET/CT: a pictorial essay. Clin Imaging. 2012;36:660–73.

    Article  PubMed  Google Scholar 

  5. Oyama N, Ito H, Takahara N, Miwa Y, Akino H, Kudo T, Okazawa H, Fujibayashi Y, Komatsu K, Tsukahara K, et al. Diagnosis of complex renal cystic masses and solid renal lesions using PET imaging: comparison of 11C-acetate and 18F-FDG PET imaging. Clin Nucl Med. 2014;39:e208–14.

    Article  PubMed  Google Scholar 

  6. Aras M, Dede F, Ones T, Inanir S, Erdil TY, Turoglu HT. Is the value of FDG PET/CT in evaluating renal metastasis underestimated? A case report and review of the literature. Mol Imaging Radionucl Ther. 2013;22:109–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakaigawa N, Kondo K, Tateishi U, Minamimoto R, Kaneta T, Namura K, Ueno D, Kobayashi K, Kishida T, Ikeda I, et al. FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer. 2015;16:67.

    Article  CAS  Google Scholar 

  8. Czarnecka AM, Kornakiewicz A, Kukwa W, Szczylik C. Frontiers in clinical and molecular diagnostics and staging of metastatic clear cell renal cell carcinoma. Future Oncol. 2014;10:1095–111.

    Article  CAS  PubMed  Google Scholar 

  9. Ravina M, Hess S, Chauhan MS, Jacob MJ, Alavi A. Tumor thrombus: ancillary findings on FDG PET/CT in an oncologic population. Clin Nucl Med. 2014;39:767–71.

    Article  PubMed  Google Scholar 

  10. Kelly-Morland C, Rudman S, Nathan P, Mallett S, Montana G, Cook G, Goh V. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated (18)F-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study. BMC Cancer. 2017;17:392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Smaldone MC, Uzzo RG. Balancing process and risk: standardizing posttreatment surveillance for renal cell carcinoma. J Urol. 2013;190:417–8.

    Article  PubMed  Google Scholar 

  12. Chen JL, Appelbaum DE, Kocherginsky M, Cowey CL, Rathmell WK, McDermott DF, Stadler WM. FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med. 2013;2:545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferda J, Ferdova E, Hora M, Hes O, Finek J, Topolcan O, Kreuzberg B. 18F-FDG-PET/CT in potentially advanced renal cell carcinoma: a role in treatment decisions and prognosis estimation. Anticancer Res. 2013;33:2665–72.

    CAS  PubMed  Google Scholar 

  14. Kakizoe M, Yao M, Tateishi U, Minamimoto R, Ueno D, Namura K, Makiyama K, Hayashi N, Sano F, Kishida T, et al. The early response of renal cell carcinoma to tyrosine kinase inhibitors evaluated by FDG PET/CT was not influenced by metastatic organ. BMC Cancer. 2014;14:390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Farnebo J, Gryback P, Harmenberg U, Laurell A, Wersall P, Blomqvist LK, Ullen A, Sandstrom P. Volumetric FDG-PET predicts overall and progression-free survival after 14 days of targeted therapy in metastatic renal cell carcinoma. BMC Cancer. 2014;14:408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yoon HJ, Paeng JC, Kwak C, Park YH, Kim TM, Lee SH, Chung JK, Edmund Kim E, Lee DS. Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy. Ann Nucl Med. 2013;27:748–55.

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima R, Matsuo Y, Kondo T, Abe K, Sakai S. Prognostic value of metabolic tumor volume and total lesion glycolysis on preoperative 18F-FDG PET/CT in patients with renal cell carcinoma. Clin Nucl Med. 2017;42:e177–82.

    Article  PubMed  Google Scholar 

  18. Fuccio C, Spinapolice EG, Cavalli C, Palumbo R, D’Ambrosio D, Trifiro G. 18F-Fluoride PET/CT in the detection of bone metastases in clear cell renal cell carcinoma: discordance with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2013;40:1930–1.

    Article  PubMed  Google Scholar 

  19. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, Chen D, Carrasquillo JA, Larson S, Bevan P, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–94.

    Article  PubMed  Google Scholar 

  20. Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, Zanzonico P, Larson SM. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turkbey B, Lindenberg ML, Adler S, Kurdziel KA, McKinney YL, Weaver J, Vocke CD, Anver M, Bratslavsky G, Eclarinal P, et al. PET/CT imaging of renal cell carcinoma with (18)F-VM4-037: a phase II pilot study. Abdom Radiol (NY). 2016;41:109–18.

    Article  Google Scholar 

  22. Ammari S, Thiam R, Cuenod CA, Oudard S, Hernigou A, Grataloup C, Siauve N, Medioni J, Fournier LS. Radiological evaluation of response to treatment: application to metastatic renal cancers receiving anti-angiogenic treatment. Diagn Interv Imaging. 2014;95:527–39.

    Article  CAS  PubMed  Google Scholar 

  23. Einspieler I, Tauber R, Maurer T, Schwaiger M, Eiber M. 68Ga prostate-specific membrane antigen uptake in renal cell cancer lymph node metastases. Clin Nucl Med. 2016;41:e261–2.

    Article  PubMed  Google Scholar 

  24. Sawicki LM, Buchbender C, Boos J, Giessing M, Ermert J, Antke C, Antoch G, Hautzel H. Diagnostic potential of PET/CT using a (68)Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2017;44:102–7.

    Article  CAS  PubMed  Google Scholar 

  25. Rhee H, Ng KL, Tse BW, Yeh MC, Russell PJ, Nelson C, Thomas P, Samaratunga H, Vela I, Gobe G, et al. Using prostate specific membrane antigen (PSMA) expression in clear cell renal cell carcinoma for imaging advanced disease. Pathology. 2016;48:613–6.

    Article  PubMed  Google Scholar 

  26. Rowe SP, Gorin MA, Hammers HJ, Pomper MG, Allaf ME, Javadi MS. Detection of 18F-FDG PET/CT occult lesions with 18F-DCFPyL PET/CT in a patient with metastatic renal cell carcinoma. Clin Nucl Med. 2016;41:83–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rowe SP, Gorin MA, Hammers HJ, Som Javadi M, Hawasli H, Szabo Z, Cho SY, Pomper MG, Allaf ME. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted (18)F-DCFPyL PET/CT. Ann Nucl Med. 2015;29:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vamadevan S, Le K, Shen L, Loh H, Mansberg R. 68Ga-DOTATATE uptake in solitary pancreatic metastasis from clear cell renal cancer. Clin Nucl Med. 2017;42:700–1.

    Article  PubMed  Google Scholar 

  29. Vamadevan S, Le K, Shen L, Stevanovic A, Loh H, Mansberg R. 68Ga-DOTATATE uptake in a soft tissue metastasis from clear cell renal cell cancer. Clin Nucl Med. 2018;43:44–5.

    Article  CAS  PubMed  Google Scholar 

  30. van Es SC, Brouwers AH, Mahesh SVK, Leliveld-Kors AM, de Jong IJ, Lub-de Hooge MN, de Vries EGE, Gietema JA, Oosting SF. (89)Zr-Bevacizumab PET: potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J Nucl Med. 2017;58:905–10.

    Article  PubMed  CAS  Google Scholar 

  31. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  32. Abdollah F, Gandaglia G, Thuret R, Schmitges J, Tian Z, Jeldres C, Passoni NM, Briganti A, Shariat SF, Perrotte P, et al. Incidence, survival and mortality rates of stage-specific bladder cancer in United States: a trend analysis. Cancer Epidemiol. 2013;37:219–25.

    Article  PubMed  Google Scholar 

  33. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374:239–49.

    Article  CAS  PubMed  Google Scholar 

  34. Parkin DM. The global burden of urinary bladder cancer. Scand J Urol Nephrol Suppl. 2008:12–20.

    Article  Google Scholar 

  35. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63:234–41.

    Article  PubMed  Google Scholar 

  36. Green DA, Rink M, Xylinas E, Matin SF, Stenzl A, Roupret M, Karakiewicz PI, Scherr DS, Shariat SF. Urothelial carcinoma of the bladder and the upper tract: disparate twins. J Urol. 2013;189:1214–21.

    Article  PubMed  Google Scholar 

  37. Crivelli JJ, Xylinas E, Kluth LA, Rieken M, Rink M, Shariat SF. Effect of smoking on outcomes of urothelial carcinoma: a systematic review of the literature. Eur Urol. 2014;65:742–54.

    Article  CAS  PubMed  Google Scholar 

  38. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, Kiemeney L, Kriegmair M, Montironi R, Murphy WM, et al. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology. 2005;66:4–34.

    Article  PubMed  Google Scholar 

  39. Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AB, Maisonneuve P, Boyle P. Tobacco smoking and cancer: a meta-analysis. Int J Cancer. 2008;122:155–64.

    Article  CAS  PubMed  Google Scholar 

  40. Bouchelouche K. Diagnostic applications of nuclear medicine: kidney and bladder cancer. In: Strauss HW, Mariani G, Volterrani D, Larson SM, editors. Nuclear oncology. From pathophysiology to clinical applications. 2nd ed. New York: Springer; 2017. p. 839–81.

    Google Scholar 

  41. Barocas DA, Clark PE. Bladder cancer. Curr Opin Oncol. 2008;20:307–14.

    Article  PubMed  Google Scholar 

  42. Bischoff CJ, Clark PE. Bladder cancer. Curr Opin Oncol. 2009;21:272–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kurth KH, Schellhammer PF, Okajima E, Akdas A, Jakse G, Herr HW, Calais da Silva F, Fukushima S, Nagayama T. Current methods of assessing and treating carcinoma in situ of the bladder with or without involvement of the prostatic urethra. Int J Urol. 1995;2(Suppl 2):8–22.

    Article  PubMed  Google Scholar 

  44. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47:736–48.

    Article  PubMed  CAS  Google Scholar 

  45. Burger M, Grossman HB, Droller M, Schmidbauer J, Hermann G, Dragoescu O, Ray E, Fradet Y, Karl A, Burgues JP, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64:846–54.

    Article  PubMed  Google Scholar 

  46. Rink M, Babjuk M, Catto JW, Jichlinski P, Shariat SF, Stenzl A, Stepp H, Zaak D, Witjes JA. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol. 2013;64:624–38.

    Article  PubMed  Google Scholar 

  47. Malmstrom PU, Grabe M, Haug ES, Hellstrom P, Hermann GG, Mogensen K, Raitanen M, Wahlqvist R. Role of hexaminolevulinate-guided fluorescence cystoscopy in bladder cancer: critical analysis of the latest data and European guidance. Scand J Urol Nephrol. 2012;46:108–16.

    Article  PubMed  CAS  Google Scholar 

  48. Tsakiris P, de la Rosette J. Imaging in genitourinary cancer from the urologists’ perspective. Cancer Imaging. 2007;7:84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawrentschuk N, Lee ST, Scott AM. Current role of PET, CT, MR for invasive bladder cancer. Curr Urol Rep. 2013;14:84–9.

    Article  PubMed  Google Scholar 

  50. Takeuchi M, Sasaki S, Naiki T, Kawai N, Kohri K, Hara M, Shibamoto Y. MR imaging of urinary bladder cancer for T-staging: a review and a pictorial essay of diffusion-weighted imaging. J Magn Reson Imaging. 2013;38:1299–309.

    Article  PubMed  Google Scholar 

  51. Paik ML, Scolieri MJ, Brown SL, Spirnak JP, Resnick MI. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol. 2000;163:1693–6.

    Article  CAS  PubMed  Google Scholar 

  52. Hafeez S, Huddart R. Advances in bladder cancer imaging. BMC Med. 2013;11:104.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vikram R, Sandler CM, Ng CS. Imaging and staging of transitional cell carcinoma: Part 1, Lower urinary tract. AJR Am J Roentgenol. 2009;192:1481–7.

    Article  PubMed  Google Scholar 

  54. Knox MK, Cowan NC, Rivers-Bowerman MD, Turney BW. Evaluation of multidetector computed tomography urography and ultrasonography for diagnosing bladder cancer. Clin Radiol. 2008;63:1317–25.

    Article  CAS  PubMed  Google Scholar 

  55. Sadow CA, Silverman SG, O’Leary MP, Signorovitch JE. Bladder cancer detection with CT urography in an Academic Medical Center. Radiology. 2008;249:195–202.

    Article  PubMed  Google Scholar 

  56. Bouchelouche K, Turkbey B, Choyke PL. PET/CT and MRI in bladder cancer. J Cancer Sci Ther. 2012;S14:7692.

    Article  PubMed  Google Scholar 

  57. Verma S, Rajesh A, Prasad SR, Gaitonde K, Lall CG, Mouraviev V, Aeron G, Bracken RB, Sandrasegaran K. Urinary bladder cancer: role of MR imaging. Radiographics. 2012;32:371–87.

    Article  PubMed  Google Scholar 

  58. Beyersdorff D, Zhang J, Schoder H, Bochner B, Hricak H. Bladder cancer: can imaging change patient management? Curr Opin Urol. 2008;18:98–104.

    Article  PubMed  Google Scholar 

  59. Zhang J, Gerst S, Lefkowitz RA, Bach A. Imaging of bladder cancer. Radiol Clin N Am. 2007;45:183–205.

    Article  PubMed  Google Scholar 

  60. Witjes JA, Comperat E, Cowan NC, De Santis M, Gakis G, Lebret T, Ribal MJ, Van der Heijden AG, Sherif A, European Association of Urology. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur Urol. 2014;65:778–92.

    Article  PubMed  Google Scholar 

  61. Bouchelouche K, Choyke PL. PET/computed tomography in renal, bladder, and testicular cancer. PET Clin. 2015;10:361–74.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mertens LS, Bruin NM, Vegt E, de Blok WM, Fioole-Bruining A, van Rhijn BW, Horenblas S, Vogel WV. Catheter-assisted 18F-FDG-PET/CT imaging of primary bladder cancer: a prospective study. Nucl Med Commun. 2012;33:1195–201.

    Article  PubMed  Google Scholar 

  63. Mertens LS, Fioole-Bruining A, Vegt E, Vogel WV, van Rhijn BW, Horenblas S. Detecting primary bladder cancer using delayed (18)F-2-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography imaging after forced diuresis. Indian J Nucl Med. 2012;27:145–50.

    PubMed  PubMed Central  Google Scholar 

  64. Chondrogiannis S, Marzola MC, Colletti PM, Rubello D. Proposal of a new acquisition protocol for bladder cancer visualization with 18F-FDG PET/CT. Clin Nucl Med. 2015;40:e78–80.

    Article  PubMed  Google Scholar 

  65. Anjos DA, Etchebehere EC, Ramos CD, Santos AO, Albertotti C, Camargo EE. 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48:764–70.

    Article  PubMed  Google Scholar 

  66. Yang Z, Cheng J, Pan L, Hu S, Xu J, Zhang Y, Wang M, Zhang J, Ye D, Zhang Y. Is whole-body fluorine-18 fluorodeoxyglucose PET/CT plus additional pelvic images (oral hydration-voiding-refilling) useful for detecting recurrent bladder cancer? Ann Nucl Med. 2012;26:571–7.

    Article  PubMed  Google Scholar 

  67. Harkirat S, Anand S, Jacob M. Forced diuresis and dual-phase F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers. Indian J Radiol Imaging. 2010;20:13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yildirim-Poyraz N, Ozdemir E, Uzun B, Turkolmez S. Dual phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography with forced diuresis in diagnostic imaging evaluation of bladder cancer. Rev Esp Med Nucl Imagen Mol. 2013;32:214–21.

    CAS  PubMed  Google Scholar 

  69. Yoon HJ, Yoo J, Kim Y, Lee DH, Kim BS. Enhanced application of 18F-FDG PET/CT in bladder cancer by adding early dynamic acquisition to a standard delayed PET protocol. Clin Nucl Med. 2017;42:749–55.

    Article  PubMed  Google Scholar 

  70. Wang N, Jiang P, Lu Y. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for detecting bladder lesions? A meta-analysis of the literature. Urol Int. 2014;92:143–9.

    Article  PubMed  Google Scholar 

  71. Rosenkrantz AB, Balar AV, Huang WC, Jackson K, Friedman KP. Comparison of coregistration accuracy of pelvic structures between sequential and simultaneous imaging during hybrid PET/MRI in patients with bladder cancer. Clin Nucl Med. 2015;40:637–41.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rosenkrantz AB, Friedman KP, Ponzo F, Raad RA, Jackson K, Huang WC, Balar AV. Prospective pilot study to evaluate the incremental value of PET information in patients with bladder cancer undergoing 18F-FDG simultaneous PET/MRI. Clin Nucl Med. 2017;42:e8–e15.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Swinnen G, Maes A, Pottel H, Vanneste A, Billiet I, Lesage K, Werbrouck P. FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol. 2010;57:641–7.

    Article  PubMed  Google Scholar 

  74. Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L. FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005;32:1412–7.

    Article  CAS  PubMed  Google Scholar 

  75. Bachor R, Kotzerke J, Reske SN, Hautmann R. [Lymph node staging of bladder neck carcinoma with positron emission tomography]. Urologe A. 1999;38:46–50.

    Article  CAS  PubMed  Google Scholar 

  76. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL. Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med. 1997;24:615–20.

    CAS  PubMed  Google Scholar 

  77. Jensen JB, Ulhoi BP, Jensen KM. Lymph node mapping in patients with bladder cancer undergoing radical cystectomy and lymph node dissection to the level of the inferior mesenteric artery. BJU Int. 2010;106:199–205.

    Article  PubMed  Google Scholar 

  78. Mertens LS, Fioole-Bruining A, Vegt E, Vogel WV, van Rhijn BW, Horenblas S. Impact of (18)F-fluorodeoxyglucose (FDG)-positron-emission tomography/computed tomography (PET/CT) on management of patients with carcinoma invading bladder muscle. BJU Int. 2013;112:729–34.

    Article  CAS  PubMed  Google Scholar 

  79. Apolo AB, Riches J, Schoder H, Akin O, Trout A, Milowsky MI, Bajorin DF. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28:3973–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kibel AS, Dehdashti F, Katz MD, Klim AP, Grubb RL, Humphrey PA, Siegel C, Cao D, Gao F, Siegel BA. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27:4314–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu IJ, Lai YH, Espiritu JI, Segall GM, Srinivas S, Nino-Murcia M, Terris MK. Evaluation of fluorodeoxyglucose positron emission tomography imaging in metastatic transitional cell carcinoma with and without prior chemotherapy. Urol Int. 2006;77:69–75.

    Article  PubMed  Google Scholar 

  82. Jensen TK, Holt P, Gerke O, Riehmann M, Svolgaard B, Marcussen N, Bouchelouche K. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging: correlation with histopathology. Scand J Urol Nephrol. 2011;45:122–8.

    Article  PubMed  Google Scholar 

  83. Vind-Kezunovic S, Bouchelouche K, Ipsen P, Hoyer S, Bell C, Bjerggaard Jensen J. Detection of lymph node metastasis in patients with bladder cancer using maximum standardised uptake value and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography: results from a high-volume centre including long-term follow-up. Eur Urol Focus. 2019;5(1):90–6.

    Article  PubMed  Google Scholar 

  84. Soubra A, Hayward D, Dahm P, Goldfarb R, Froehlich J, Jha G, Konety BR. The diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography and computed tomography in staging bladder cancer: a single-institution study and a systematic review with meta-analysis. World J Urol. 2016;34(9):1229–37.

    Article  PubMed  Google Scholar 

  85. Lodde M, Lacombe L, Friede J, Morin F, Saourine A, Fradet Y. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010;106:658–63.

    Article  PubMed  Google Scholar 

  86. Nayak B, Dogra PN, Naswa N, Kumar R. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique. Eur J Nucl Med Mol Imaging. 2013;40:386–93.

    Article  CAS  PubMed  Google Scholar 

  87. Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G, Hughes S, Evison F, Dasgupta P, O’Brien T, Khan MS. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114:389–95.

    CAS  PubMed  Google Scholar 

  88. Hitier-Berthault M, Ansquer C, Branchereau J, Renaudin K, Bodere F, Bouchot O, Rigaud J. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study. Int J Urol. 2013;20:788–96.

    Article  CAS  PubMed  Google Scholar 

  89. Lu YY, Chen JH, Liang JA, Wang HY, Lin CC, Lin WY, Kao CH. Clinical value of FDG PET or PET/CT in urinary bladder cancer: a systemic review and meta-analysis. Eur J Radiol. 2012;81:2411–6.

    Article  PubMed  Google Scholar 

  90. Jadvar H, Quan V, Henderson RW, Conti PS. [F-18]-Fluorodeoxyglucose PET and PET-CT in diagnostic imaging evaluation of locally recurrent and metastatic bladder transitional cell carcinoma. Int J Clin Oncol. 2008;13:42–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alongi P, Caobelli F, Gentile R, Stefano A, Russo G, Albano D, Baldari S, Gilardi MC, Midiri M. Recurrent bladder carcinoma: clinical and prognostic role of 18 F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:224–33.

    Article  CAS  PubMed  Google Scholar 

  92. Meeks JJ, Bellmunt J, Bochner BH, Clarke NW, Daneshmand S, Galsky MD, Hahn NM, Lerner SP, Mason M, Powles T, et al. A systematic review of neoadjuvant and adjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol. 2012;62:523–33.

    Article  CAS  PubMed  Google Scholar 

  93. Mertens LS, Fioole-Bruining A, van Rhijn BW, Kerst JM, Bergman AM, Vogel WV, Vegt E, Horenblas S. FDG-positron emission tomography/computerized tomography for monitoring the response of pelvic lymph node metastasis to neoadjuvant chemotherapy for bladder cancer. J Urol. 2013;189:1687–91.

    Article  PubMed  Google Scholar 

  94. Kollberg P, Almquist H, Blackberg M, Cwikiel M, Gudjonsson S, Lyttkens K, Patschan O, Liedberg F. [(18)F]Fluorodeoxyglucose-positron emission tomography/computed tomography response evaluation can predict histological response at surgery after induction chemotherapy for oligometastatic bladder cancer. Scand J Urol. 2017;51:308–13.

    Article  PubMed  Google Scholar 

  95. van de Putte EEF, Vegt E, Mertens LS, Bruining A, Hendricksen K, van der Heijden MS, Horenblas S, van Rhijn BWG. FDG-PET/CT for response evaluation of invasive bladder cancer following neoadjuvant chemotherapy. Int Urol Nephrol. 2017;49:1585–91.

    Article  PubMed  Google Scholar 

  96. Giannatempo P, Alessi A, Miceli R, Raggi D, Fare E, Nicolai N, Serafini G, Padovano B, Piva L, Biasoni D, et al. Interim fluorine-18 fluorodeoxyglucose positron emission tomography for early metabolic assessment of therapeutic response to chemotherapy for metastatic transitional cell carcinoma. Clin Genitourin Cancer. 2014;12:433–9.

    Article  PubMed  Google Scholar 

  97. Mertens LS, Mir MC, Scott AM, Lee ST, Fioole-Bruining A, Vegt E, Vogel WV, Manecksha R, Bolton D, Davis ID, et al. 18F-fluorodeoxyglucose—positron emission tomography/computed tomography aids staging and predicts mortality in patients with muscle-invasive bladder cancer. Urology. 2014;83:393–8.

    Article  PubMed  Google Scholar 

  98. Bouchelouche K, Turkbey B, Choyke PL. PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med. 2016;46:522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Campbell SP, Baras AS, Ball MW, Kates M, Hahn NM, Bivalacqua TJ, Johnson MH, Pomper MG, Allaf ME, Rowe SP, et al. Low levels of PSMA expression limit the utility of (18)F-DCFPyL PET/CT for imaging urothelial carcinoma. Ann Nucl Med. 2018;32:69–74.

    Article  CAS  PubMed  Google Scholar 

  100. Picchio M, Treiber U, Beer AJ, Metz S, Bossner P, van Randenborgh H, Paul R, Weirich G, Souvatzoglou M, Hartung R, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47:938–44.

    CAS  PubMed  Google Scholar 

  101. Gofrit ON, Mishani E, Orevi M, Klein M, Freedman N, Pode D, Shapiro A, Katz R, Libson E, Chisin R. Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol. 2006;176:940–4; discussion 944.

    Article  PubMed  Google Scholar 

  102. Brunocilla E, Ceci F, Schiavina R, Castellucci P, Maffione AM, Cevenini M, Bianchi L, Borghesi M, Giunchi F, Fiorentino M, et al. Diagnostic accuracy of (11)C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med. 2014;39:e308–12.

    Article  PubMed  Google Scholar 

  103. de Jong IJ, Pruim J, Elsinga PH, Jongen MM, Mensink HJ, Vaalburg W. Visualisation of bladder cancer using (11)C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging. 2002;29:1283–8.

    Article  PubMed  CAS  Google Scholar 

  104. Maurer T, Horn T, Souvatzoglou M, Eiber M, Beer AJ, Heck MM, Haller B, Gschwend JE, Schwaiger M, Treiber U, et al. Prognostic value of 11C-choline PET/CT and CT for predicting survival of bladder cancer patients treated with radical cystectomy. Urol Int. 2014;93:207–13.

    Article  CAS  PubMed  Google Scholar 

  105. Graziani T, Ceci F, Lopes FL, Chichero J, Castellucci P, Schiavina R, Bianchi L, Chondrogiannis S, Colletti PM, Costa S, et al. 11C-choline PET/CT for restaging of bladder cancer. Clin Nucl Med. 2015;40:e1–5.

    Article  PubMed  Google Scholar 

  106. Maurer T, Souvatzoglou M, Kubler H, Opercan K, Schmidt S, Herrmann K, Stollfuss J, Weirich G, Haller B, Gschwend JE, et al. Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol. 2012;61:1031–8.

    Article  PubMed  Google Scholar 

  107. Ahlstrom H, Malmstrom PU, Letocha H, Andersson J, Langstrom B, Nilsson S. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996;37:180–5.

    Article  CAS  PubMed  Google Scholar 

  108. Letocha H, Ahlstrom H, Malmstrom PU, Westlin JE, Fasth KJ, Nilsson S. Positron emission tomography with L-methyl-11C-methionine in the monitoring of therapy response in muscle-invasive transitional cell carcinoma of the urinary bladder. Br J Urol. 1994;74:767–74.

    Article  CAS  PubMed  Google Scholar 

  109. Vargas HA, Akin O, Schoder H, Olgac S, Dalbagni G, Hricak H, Bochner BH. Prospective evaluation of MRI, (1)(1)C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol. 2012;81:4131–7.

    Article  CAS  PubMed  Google Scholar 

  110. Orevi M, Klein M, Mishani E, Chisin R, Freedman N, Gofrit ON. 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med. 2012;37:e67–72.

    Article  PubMed  Google Scholar 

  111. Chakraborty D, Bhattacharya A, Mete UK, Mittal BR. Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med. 2013;38:616–21.

    Article  PubMed  Google Scholar 

  112. Patil VV, Wang ZJ, Sollitto RA, Chuang KW, Konety BR, Hawkins RA, Coakley FV. 18F-FDG PET/CT of transitional cell carcinoma. AJR Am J Roentgenol. 2009;193:W497–504.

    Article  PubMed  Google Scholar 

  113. Asai S, Fukumoto T, Tanji N, Miura N, Miyagawa M, Nishimura K, Yanagihara Y, Shirato A, Miyauchi Y, Kikugawa T, et al. Fluorodeoxyglucose positron emission tomography/computed tomography for diagnosis of upper urinary tract urothelial carcinoma. Int J Clin Oncol. 2015;20:1042–7.

    Article  CAS  PubMed  Google Scholar 

  114. Tanaka H, Yoshida S, Komai Y, Sakai Y, Urakami S, Yuasa T, Yamamoto S, Masuda H, Koizumi M, Kohno A, et al. Clinical value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in upper tract urothelial carcinoma: impact on detection of metastases and patient management. Urol Int. 2016;96:65–72.

    Article  CAS  PubMed  Google Scholar 

  115. Kitajima K, Yamamoto S, Fukushima K, Yamakado K, Katsuura T, Igarashi Y, Kawanaka Y, Mouri M, Hirota S. FDG-PET/CT as a post-treatment restaging tool in urothelial carcinoma: comparison with contrast-enhanced CT. Eur J Radiol. 2016;85:593–8.

    Article  PubMed  Google Scholar 

  116. Albers P, Albrecht W, Algaba F, Bokemeyer C, Cohn-Cedermark G, Fizazi K, Horwich A, Laguna MP, European Association of Urology. EAU guidelines on testicular cancer: 2011 update. Eur Urol. 2011;60:304–19.

    Article  PubMed  Google Scholar 

  117. Manecksha RP, Fitzpatrick JM. Epidemiology of testicular cancer. BJU Int. 2009;104:1329–33.

    Article  PubMed  Google Scholar 

  118. Horwich A, Shipley J, Huddart R. Testicular germ-cell cancer. Lancet. 2006;367:754–65.

    Article  CAS  PubMed  Google Scholar 

  119. Flechon A, Rivoire M, Droz JP. Management of advanced germ-cell tumors of the testis. Nat Clin Pract Urol. 2008;5:262–76.

    Article  CAS  PubMed  Google Scholar 

  120. Jana S, Blaufox MD. Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med. 2006;36:51–72.

    Article  PubMed  Google Scholar 

  121. Kim W, Rosen MA, Langer JE, Banner MP, Siegelman ES, Ramchandani P. US MR imaging correlation in pathologic conditions of the scrotum. Radiographics. 2007;27:1239–53.

    Article  PubMed  Google Scholar 

  122. Cassidy FH, Ishioka KM, McMahon CJ, Chu P, Sakamoto K, Lee KS, Aganovic L. MR imaging of scrotal tumors and pseudotumors. Radiographics. 2010;30:665–83.

    Article  PubMed  Google Scholar 

  123. Johnson JO, Mattrey RF, Phillipson J. Differentiation of seminomatous from nonseminomatous testicular tumors with MR imaging. AJR Am J Roentgenol. 1990;154:539–43.

    Article  CAS  PubMed  Google Scholar 

  124. Shao D, Gao Q, Tian XW, Wang SY, Liang CH, Wang SX. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT. Eur J Radiol. 2017;93:114–20.

    Article  PubMed  Google Scholar 

  125. Hain SF, O’Doherty MJ, Timothy AR, Leslie MD, Harper PG, Huddart RA. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer. 2000;83:863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hain SF, O’Doherty MJ, Timothy AR, Leslie MD, Partridge SE, Huddart RA. Fluorodeoxyglucose PET in the initial staging of germ cell tumours. Eur J Nucl Med. 2000;27:590–4.

    Article  CAS  PubMed  Google Scholar 

  127. Lassen U, Daugaard G, Eigtved A, Hojgaard L, Damgaard K, Rorth M. Whole-body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med Mol Imaging. 2003;30:396–402.

    Article  CAS  PubMed  Google Scholar 

  128. Cremerius U, Wildberger JE, Borchers H, Zimny M, Jakse G, Gunther RW, Buell U. Does positron emission tomography using 18-fluoro-2-deoxyglucose improve clinical staging of testicular cancer?—Results of a study in 50 patients. Urology. 1999;54:900–4.

    Article  CAS  PubMed  Google Scholar 

  129. Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C, Allegri V, Martoni A, Rubello D, Cricca A, Fanti S. 18F-FDG PET/CT impact on testicular tumours clinical management. Eur J Nucl Med Mol Imaging. 2014;41:668–73.

    Article  CAS  PubMed  Google Scholar 

  130. Sharma P, Jain TK, Parida GK, Karunanithi S, Patel C, Sharma A, Thulkar S, Julka PK, Bal C, Kumar R. Diagnostic accuracy of integrated (18)F-FDG PET/CT for restaging patients with malignant germ cell tumours. Br J Radiol. 2014;87:20140263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhao JY, Ma XL, Li YY, Zhang BL, Li MM, Ma XL, Liu L. Diagnostic accuracy of 18F-FDG-PET in patients with testicular cancer: a meta-analysis. Asian Pac J Cancer Prev. 2014;15:3525–31.

    Article  PubMed  Google Scholar 

  132. Stomper PC, Kalish LA, Garnick MB, Richie JP, Kantoff PW. CT and pathologic predictive features of residual mass histologic findings after chemotherapy for nonseminomatous germ cell tumors: can residual malignancy or teratoma be excluded? Radiology. 1991;180:711–4.

    Article  CAS  PubMed  Google Scholar 

  133. Bachner M, Loriot Y, Gross-Goupil M, Zucali PA, Horwich A, Germa-Lluch JR, Kollmannsberger C, Stoiber F, Flechon A, Oechsle K, et al. 2-(1)(8)fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions: a retrospective validation of the SEMPET trial. Ann Oncol. 2012;23:59–64.

    Article  CAS  PubMed  Google Scholar 

  134. Hinz S, Schrader M, Kempkensteffen C, Bares R, Brenner W, Krege S, Franzius C, Kliesch S, Heicappel R, Miller K, et al. The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. J Urol. 2008;179:936–940; discussion 940.

    Article  PubMed  Google Scholar 

  135. Lewis DA, Tann M, Kesler K, McCool A, Foster RS, Einhorn LH. Positron emission tomography scans in postchemotherapy seminoma patients with residual masses: a retrospective review from Indiana University Hospital. J Clin Oncol. 2006;24:e54–5.

    Article  PubMed  Google Scholar 

  136. De Santis M, Becherer A, Bokemeyer C, Stoiber F, Oechsle K, Sellner F, Lang A, Kletter K, Dohmen BM, Dittrich C, et al. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol. 2004;22:1034–9.

    Article  PubMed  Google Scholar 

  137. Spermon JR, De Geus-Oei LF, Kiemeney LA, Witjes JA, Oyen WJ. The role of (18)fluoro-2-deoxyglucose positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int. 2002;89:549–56.

    Article  CAS  PubMed  Google Scholar 

  138. Ganjoo KN, Chan RJ, Sharma M, Einhorn LH. Positron emission tomography scans in the evaluation of postchemotherapy residual masses in patients with seminoma. J Clin Oncol. 1999;17:3457–60.

    Article  CAS  PubMed  Google Scholar 

  139. Oechsle K, Hartmann M, Brenner W, Venz S, Weissbach L, Franzius C, Kliesch S, Mueller S, Krege S, Heicappell R, et al. [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol. 2008;26:5930–5.

    Article  PubMed  Google Scholar 

  140. Becherer A, De Santis M, Karanikas G, Szabo M, Bokemeyer C, Dohmen BM, Pont J, Dudczak R, Dittrich C, Kletter K. FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur J Radiol. 2005;54:284–8.

    Article  PubMed  Google Scholar 

  141. De Santis M, Bokemeyer C, Becherer A, Stoiber F, Oechsle K, Kletter K, Dohmen BM, Dittrich C, Pont J. Predictive impact of 2-18fluoro-2-deoxy-D-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. J Clin Oncol. 2001;19:3740–4.

    Article  PubMed  Google Scholar 

  142. Siekiera J, Malkowski B, Jozwicki W, Jasinski M, Wronczewski A, Pietrzak T, Chmielowska E, Petrus A, Kamecki K, Mikolajczak W, et al. Can we rely on PET in the follow-up of advanced seminoma patients? Urol Int. 2012;88:405–9.

    Article  CAS  PubMed  Google Scholar 

  143. Cook GJ, Sohaib A, Huddart RA, Dearnaley DP, Horwich A, Chua S. The role of 18F-FDG PET/CT in the management of testicular cancers. Nucl Med Commun. 2015;36:702–8.

    Article  CAS  PubMed  Google Scholar 

  144. Treglia G, Sadeghi R, Annunziata S, Caldarella C, Bertagna F, Giovanella L. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the postchemotherapy management of patients with seminoma: systematic review and meta-analysis. Biomed Res Int. 2014;2014:852681.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hartmann JT, Schmoll HJ, Kuczyk MA, Candelaria M, Bokemeyer C. Postchemotherapy resections of residual masses from metastatic non-seminomatous testicular germ cell tumors. Ann Oncol. 1997;8:531–8.

    Article  CAS  PubMed  Google Scholar 

  146. Pfannenberg C, Aschoff P, Dittmann H, Mayer F, Reischl G, von Weyhern C, Kanz L, Claussen CD, Bares R, Hartmann JT. PET/CT with 18F-FLT: does it improve the therapeutic management of metastatic germ cell tumors? J Nucl Med. 2010;51:845–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bouchelouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouchelouche, K., Choyke, P.L. (2020). PET/CT in Renal, Bladder, and Testicular Cancer. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics