Skip to main content

PET in Lymphoma

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

The management approach in Hodgkin (HL) and high-grade non-Hodgkin lymphomas (NHLs) has shifted toward reducing the toxicity and long-term adverse effects associated with treatment while maintaining favorable outcomes in low-risk patients. The availability of more effective therapies for lymphoma provides a rationale for accurate diagnostic tests and updated patient evaluation, staging, and response criteria. In this regard, positron emission tomography (PET) using fluorodeoxyglucose (FDG) with computed tomography (CT) has proved effective as a metabolic imaging tool with compelling evidence supporting its superiority over conventional modalities, particularly in staging and early evaluation of response, and is now integrated into the routine staging and restaging algorithm of lymphomas. A semiquantitative parameter for measuring tumor glucose metabolism, the maximum standardized uptake value (SUVmax), reflects aggressiveness of neoplasm and is proven to be an important survival predictor. Several quantitative metrics including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) appears to be dependable and reproducible prognostic indicators. Additionally, the 5-point Deauville score (DS) has been recommended as a qualitative method for evaluating interim and end-of-treatment PET/CT results. This chapter summarizes the data on the proven and potential utility of PET/CT imaging for staging, response assessment, and restaging, describing current limitations of this imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer stat facts: non-Hodgkin lymphoma. Bethesda, MD: National Cancer Institute; 2018. https://seer.cancer.gov/statfacts/html/nhl.html

    Google Scholar 

  2. Jacobson CA, Longo DL. Non-Hodgkin’s lymphoma. New York, NY: McGraw-Hill Education; 2018.

    Google Scholar 

  3. Swerdlow SH, Campo E Harris NL, Bosman FT, Jaffe ES, Lakhani SR, Ohgaki H, eds. , WHO classification of tumours of haematopoietic and lymphoid tissues. The International Agency for Research on Cancer (IARC) 2008; 2008; Lyon, France: World Health Organization classification of tumours.

    Google Scholar 

  4. Savage KJ, Zeynalova S, Kansara RR. Validation of a prognostic model to assess the risk of CNS disease in patients with aggressive B-cell lymphoma. Blood. 2014;124(21):394.

    Article  Google Scholar 

  5. Vitolo U, Chiappella A, Ferreri AJ, Martelli M, Baldi I, Balzarotti M, et al. First-line treatment for primary testicular diffuse large B-cell lymphoma with rituximab-CHOP, CNS prophylaxis, and contralateral testis irradiation: final results of an international phase II trial. J Clin Oncol. 2011;29(20):2766–72.

    Article  CAS  PubMed  Google Scholar 

  6. Hosein PJ, Maragulia JC, Salzberg MP, Press OW, Habermann TM, Vose JM, et al. A multicentre study of primary breast diffuse large B-cell lymphoma in the rituximab era. Br J Haematol. 2014;165(3):358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahul B, Amin MF, editors. AJCC cancer staging manual. New York: Springer International Publishing; 2017.

    Google Scholar 

  8. National Cancer Institute sponsored study of classifications of non-Hodgkin’s lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin’s Lymphoma Pathologic Classification Project. Cancer. 1982;49(10):2112–35.

    Google Scholar 

  9. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November, 1997. Hematol J. 2000;1(1):53–66.

    Article  CAS  PubMed  Google Scholar 

  10. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peters M. A study of survival in Hodgkin’s disease treated radiologically. Am J Roentgenol. 1950;62:299–311.

    Google Scholar 

  12. Rosenberg SA, Boiron M, DeVita VT Jr, Johnson RE, Lee BJ, Ultmann JE, Viamonte M Jr. Report of the committee on Hodgkin’s disease staging procedures. Cancer Res. 1971;31(11):1862–3.

    CAS  PubMed  Google Scholar 

  13. Carbone PP, Kaplan H, Musshoff K, et al. Report of the committee on Hodgkin’s disease. Cancer Res. 1971;31(11):1860–1.

    CAS  PubMed  Google Scholar 

  14. Rosenberg SA. Validity of the Ann Arbor staging classification for the non-Hodgkin’s lymphomas. Cancer Treat Rep. 1977;61(6):1023–7.

    CAS  PubMed  Google Scholar 

  15. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–67.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arcaini L, Rattotti S, Gotti M, Luminari S. Prognostic assessment in patients with indolent B-cell lymphomas. TheScientificWorldJournal. 2012;2012:107892.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Federico M, Bellei M, Marcheselli L, Luminari S, Lopez-Guillermo A, Vitolo U, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555–62.

    Article  PubMed  Google Scholar 

  18. Pfreundschuh M, Ho AD, Cavallin-Stahl E, Wolf M, Pettengell R, Vasova I, et al. Prognostic significance of maximum tumour (bulk) diameter in young patients with good-prognosis diffuse large-B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: an exploratory analysis of the MabThera International Trial Group (MInT) study. Lancet Oncol. 2008;9(5):435–44.

    Article  PubMed  Google Scholar 

  19. Hoane BR, Shields AF, Porter BA, Borrow JW. Comparison of initial lymphoma staging using computed tomography (CT) and magnetic resonance (MR) imaging. Am J Hematol. 1994;47(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  20. Jung G, Heindel W, von Bergwelt-Baildon M, Bredenfeld H, Gossmann A, Zahringer M, et al. Abdominal lymphoma staging: is MR imaging with T2-weighted turbo-spin-echo sequence a diagnostic alternative to contrast-enhanced spiral CT? J Comput Assist Tomogr. 2000;24(5):783–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrucci JT. Advances in abdominal MR imaging. Radiographics. 1998;18(6):1569–86.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson SA, Kumar A, Matasar MJ, Schoder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276(2):323–38.

    Article  PubMed  Google Scholar 

  23. Kwee TC, Kwee RM, Nievelstein RA. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008;111(2):504–16.

    Article  CAS  PubMed  Google Scholar 

  24. Barrington SF, Mackewn JE, Schleyer P, Marsden PK, Mikhaeel NG, Qian W, et al. Establishment of a UK-wide network to facilitate the acquisition of quality assured FDG-PET data for clinical trials in lymphoma. Ann Oncol. 2011;22(3):739–45.

    Article  CAS  PubMed  Google Scholar 

  25. Quarles van Ufford H, Hoekstra O, de Haas M, Fijnheer R, Wittebol S, Tieks B, et al. On the added value of baseline FDG-PET in malignant lymphoma. Mol Imaging Biol. 2010;12(2):225–32.

    Article  PubMed  Google Scholar 

  26. Schaefer NG, Hany TF, Taverna C, Seifert B, Stumpe KDM, von Schulthess GK, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging—do we need contrast-enhanced CT? Radiology. 2004;232(3):823–9.

    Article  PubMed  Google Scholar 

  27. Johnson SA, Kumar A, Matasar MJ, Schöder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276(2):323–38.

    Article  PubMed  Google Scholar 

  28. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89(11):3909–18.

    Google Scholar 

  29. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94.

    Google Scholar 

  30. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Z, Sehn LH, Rademaker AW, Gordon LI, Lacasce AS, Crosby-Thompson A, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. American Cancer Society. American Cancer Society: Cancer facts and figures 2019. 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf.

  33. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012;380(9844):848–57.

    Article  PubMed  Google Scholar 

  34. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95.

    Article  CAS  PubMed  Google Scholar 

  35. Tan D, Horning SJ, Hoppe RT, Levy R, Rosenberg SA, Sigal BM, et al. Improvements in observed and relative survival in follicular grade 1–2 lymphoma during 4 decades: the Stanford University experience. Blood. 2013;122(6):981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bastion Y, Sebban C, Berger F, Felman P, Salles G, Dumontet C, et al. Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol. 1997;15(4):1587–94.

    Article  CAS  PubMed  Google Scholar 

  37. Yuen AR, Kamel OW, Halpern J, Horning SJ. Long-term survival after histologic transformation of low-grade follicular lymphoma. J Clin Oncol. 1995;13(7):1726–33.

    Article  CAS  PubMed  Google Scholar 

  38. Cabanillas F, Velasquez WS, Hagemeister FB, McLaughlin P, Redman JR. Clinical, biologic, and histologic features of late relapses in diffuse large cell lymphoma. Blood. 1992;79(4):1024–8.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson T, Chabner BA, Young RC, Berard CW, Garvin AJ, Simon RM, et al. Malignant lymphoma. 1. The histology and staging of 473 patients at the National Cancer Institute. Cancer. 1982;50(12):2699–707.

    Article  CAS  PubMed  Google Scholar 

  40. Tubiana M, Henry-Amar M, Carde P, Burgers JM, Hayat M, Van der Schueren E, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials: 1964–1987. Blood. 1989;73(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  41. Diehl V, Sextro M, Franklin J, Hansmann ML, Harris N, Jaffe E, et al. Clinical presentation, course, and prognostic factors in lymphocyte-predominant Hodgkin’s disease and lymphocyte-rich classical Hodgkin’s disease: report from the European Task Force on Lymphoma Project on Lymphocyte-Predominant Hodgkin’s Disease. J Clin Oncol. 1999;17(3):776–83.

    Article  CAS  PubMed  Google Scholar 

  42. Ng AK, Bernardo MV, Weller E, Backstrand K, Silver B, Marcus KC, et al. Second malignancy after Hodgkin disease treated with radiation therapy with or without chemotherapy: long-term risks and risk factors. Blood. 2002;100(6):1989–96.

    Article  CAS  PubMed  Google Scholar 

  43. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30.

    Article  PubMed  Google Scholar 

  45. Luminari S, Biasoli I, Arcaini L, Versari A, Rusconi C, Merli F, et al. The use of FDG-PET in the initial staging of 142 patients with follicular lymphoma: a retrospective study from the FOLL05 randomized trial of the Fondazione Italiana Linfomi. Ann Oncol. 2013;24(8):2108–12.

    Article  CAS  PubMed  Google Scholar 

  46. Trotman J, Fournier M, Lamy T, Seymour JF, Sonet A, Janikova A, et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J Clin Oncol. 2011;29(23):3194–200.

    Article  PubMed  Google Scholar 

  47. Dupuis J, Berriolo-Riedinger A, Julian A, Brice P, Tychyj-Pinel C, Tilly H, et al. Impact of [(18)F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d’Etudes des Lymphomes de l’Adulte and GOELAMS. J Clin Oncol. 2012;30(35):4317–22.

    Article  CAS  PubMed  Google Scholar 

  48. Bodet-Milin C, Touzeau C, Leux C, Sahin M, Moreau A, Maisonneuve H, et al. Prognostic impact of 18F-fluoro-deoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from the GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37(9):1633–42.

    Article  CAS  PubMed  Google Scholar 

  49. Feeney J, Horwitz S, Gonen M, Schoder H. Characterization of T-cell lymphomas by FDG PET/CT. AJR Am J Roentgenol. 2010;195(2):333–40.

    Article  PubMed  Google Scholar 

  50. Cahu X, Bodet-Milin C, Brissot E, Maisonneuve H, Houot R, Morineau N, et al. 18F-fluorodeoxyglucose-positron emission tomography before, during and after treatment in mature T/NK lymphomas: a study from the GOELAMS group. Ann Oncol. 2011;22(3):705–11.

    Article  CAS  PubMed  Google Scholar 

  51. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma. 2009;50(8):1257–60.

    Article  PubMed  Google Scholar 

  52. Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med. 2004;34(2):122–33.

    Article  PubMed  Google Scholar 

  53. Barrington SF, O’Doherty MJ. Limitations of PET for imaging lymphoma. Eur J Nucl Med Mol Imaging. 2003;30(Suppl 1):S117–27.

    Article  PubMed  Google Scholar 

  54. Isasi CR, Lu P, Blaufox MD. A metaanalysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer. 2005;104(5):1066–74.

    Article  PubMed  Google Scholar 

  55. Naumann R, Beuthien-Baumann B, Reiss A, Schulze J, Hanel A, Bredow J, et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer. 2004;90(3):620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK, Keiding S, et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica. 2006;91(4):482–9.

    PubMed  Google Scholar 

  57. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica. 2001;86(3):266–73.

    CAS  PubMed  Google Scholar 

  58. Weihrauch MR, Re D, Bischoff S, Dietlein M, Scheidhauer K, Krug B, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol. 2002;81(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  59. Picardi M, Soricelli A, Grimaldi F, Nicolai E, Gallamini A, Pane F. Fused FDG-PET/contrast-enhanced CT detects occult subdiaphragmatic involvement of Hodgkin’s lymphoma thereby identifying patients requiring six cycles of anthracycline-containing chemotherapy and consolidation radiation of spleen. Ann Oncol. 2011;22(3):671–80.

    Article  CAS  PubMed  Google Scholar 

  60. Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91(9):3340–6.

    Article  CAS  PubMed  Google Scholar 

  61. Tatsumi M, Cohade C, Nakamoto Y, Fishman EK, Wahl RL. Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience. Radiology. 2005;237(3):1038–45.

    Article  PubMed  Google Scholar 

  62. Bangerter M, Moog F, Buchmann I, Kotzerke J, Griesshammer M, Hafner M, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9(10):1117–22.

    Article  CAS  PubMed  Google Scholar 

  63. Buchmann I, Reinhardt M, Elsner K, Bunjes D, Altehoefer C, Finke J, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer. 2001;91(5):889–99.

    Article  CAS  PubMed  Google Scholar 

  64. Munker R, Glass J, Griffeth LK, Sattar T, Zamani R, Heldmann M, et al. Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol. 2004;15(11):1699–704.

    Article  CAS  PubMed  Google Scholar 

  65. Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11(10):1273–9.

    Article  CAS  PubMed  Google Scholar 

  66. Pelosi E, Pregno P, Penna D, Deandreis D, Chiappella A, Limerutti G, et al. Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma. Radiol Med. 2008;113(4):578–90.

    Article  CAS  PubMed  Google Scholar 

  67. Raanani P, Shasha Y, Perry C, Metser U, Naparstek E, Apter S, et al. Is CT scan still necessary for staging in Hodgkin and non-Hodgkin lymphoma patients in the PET/CT era? Ann Oncol. 2006;17(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  68. Rigacci L, Vitolo U, Nassi L, Merli F, Gallamini A, Pregno P, et al. Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann Hematol. 2007;86(12):897–903.

    Article  PubMed  Google Scholar 

  69. Rodriguez-Vigil B, Gomez-Leon N, Pinilla I, Hernandez-Maraver D, Coya J, Martin-Curto L, et al. PET/CT in lymphoma: prospective study of enhanced full-dose PET/CT versus unenhanced low-dose PET/CT. J Nucl Med. 2006;47(10):1643–8.

    PubMed  Google Scholar 

  70. Schaefer NG, Taverna C, Strobel K, Wastl C, Kurrer M, Hany TF. Hodgkin disease: diagnostic value of FDG PET/CT after first-line therapy—is biopsy of FDG-avid lesions still needed? Radiology. 2007;244(1):257–62.

    Article  PubMed  Google Scholar 

  71. DeVita VT Jr, Canellos GP. The lymphomas. Semin Hematol. 1999;36(4 Suppl 7):84–94.

    CAS  PubMed  Google Scholar 

  72. Shipp MA. Prognostic factors in aggressive non-Hodgkin’s lymphoma: who has “high-risk” disease? Blood. 1994;83(5):1165–73.

    Article  CAS  PubMed  Google Scholar 

  73. Zelenetz AD, Gordon LI, Abramson JS, et al. NCCN clinical practice guidelines in oncology: B-cell lymphomas. Version 2.2019. 2019. https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf.

  74. El-Galaly TC, d’Amore F, Mylam KJ, de Nully Brown P, Bogsted M, Bukh A, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.

    Article  PubMed  Google Scholar 

  75. Khan AB, Barrington SF, Mikhaeel NG, Hunt AA, Cameron L, Morris T, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013;122(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  76. Conlan MG, Bast M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol. 1990;8(7):1163–72.

    Article  CAS  PubMed  Google Scholar 

  77. Senff NJ, Kluin-Nelemans HC, Willemze R. Results of bone marrow examination in 275 patients with histological features that suggest an indolent type of cutaneous B-cell lymphoma. Br J Haematol. 2008;142(1):52–6.

    Article  PubMed  Google Scholar 

  78. Juneja SK, Wolf MM, Cooper IA. Value of bilateral bone marrow biopsy specimens in non-Hodgkin’s lymphoma. J Clin Pathol. 1990;43(8):630–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brunning RD, Bloomfield CD, McKenna RW, Peterson LA. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med. 1975;82(3):365–6.

    Article  CAS  PubMed  Google Scholar 

  80. Abdel-Dayem HM, Rosen G, El-Zeftawy H, Naddaf S, Kumar M, Atay S, et al. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation. Clin Nucl Med. 1999;24(5):319–22.

    Article  CAS  PubMed  Google Scholar 

  81. Gundlapalli S, Ojha B, Mountz JM. Granulocyte colony-stimulating factor: confounding F-18 FDG uptake in outpatient positron emission tomographic facilities for patients receiving ongoing treatment of lymphoma. Clin Nucl Med. 2002;27(2):140–1.

    Article  PubMed  Google Scholar 

  82. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206(2):475–81.

    Article  CAS  PubMed  Google Scholar 

  83. Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46(6):958–63.

    PubMed  Google Scholar 

  84. Pelosi E, Penna D, Douroukas A, Bello M, Amati A, Arena V, et al. Bone marrow disease detection with FDG-PET/CT and bone marrow biopsy during the staging of malignant lymphoma: results from a large multicentre study. Q J Nucl Med Mol Imaging. 2011;55(4):469–75.

    CAS  PubMed  Google Scholar 

  85. Cortes-Romera M, Sabate-Llobera A, Mercadal-Vilchez S, Climent-Esteller F, Serrano-Maestro A, Gamez-Cenzano C, et al. Bone marrow evaluation in initial staging of lymphoma: 18F-FDG PET/CT versus bone marrow biopsy. Clin Nucl Med. 2014;39(1):e46–52.

    Article  PubMed  Google Scholar 

  86. Muzahir S, Mian M, Munir I, Nawaz MK, Faruqui ZS, Mufti KA, et al. Clinical utility of (1)(8)F FDG-PET/CT in the detection of bone marrow disease in Hodgkin’s lymphoma. Br J Radiol. 2012;85(1016):e490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weiler-Sagie M, Kagna O, Dann EJ, Ben-Barak A, Israel O. Characterizing bone marrow involvement in Hodgkin’s lymphoma by FDG-PET/CT. Eur J Nucl Med Mol Imaging. 2014;41(6):1133–40.

    Article  PubMed  Google Scholar 

  88. Alzahrani M, El-Galaly TC, Hutchings M, Hansen JW, Loft A, Johnsen HE, et al. The value of routine bone marrow biopsy in patients with diffuse large B-cell lymphoma staged with PET/CT: a Danish-Canadian study. Ann Oncol. 2016;27(6):1095–9.

    Article  CAS  PubMed  Google Scholar 

  89. Ujjani CS, Hill EM, Wang H, Nassif S, Esposito G, Ozdemirli M, et al. (18)F-FDG PET-CT and trephine biopsy assessment of bone marrow involvement in lymphoma. Br J Haematol. 2016;174(3):410–6.

    Article  CAS  PubMed  Google Scholar 

  90. Prassopoulos P, Daskalogiannaki M, Raissaki M, Hatjidakis A, Gourtsoyiannis N. Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol. 1997;7(2):246–8.

    Article  CAS  PubMed  Google Scholar 

  91. Loftus WK, Chow LT, Metreweli C. Sonographic measurement of splenic length: correlation with measurement at autopsy. J Clin Ultrasound. 1999;27(2):71–4.

    Article  CAS  PubMed  Google Scholar 

  92. Saboo SS, Krajewski KM, O’Regan KN, Giardino A, Brown JR, Ramaiya N, et al. Spleen in haematological malignancies: spectrum of imaging findings. Br J Radiol. 2012;85(1009):81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lamb PM, Lund A, Kanagasabay RR, Martin A, Webb JA, Reznek RH. Spleen size: how well do linear ultrasound measurements correlate with three-dimensional CT volume assessments? Br J Radiol. 2002;75(895):573–7.

    Article  CAS  PubMed  Google Scholar 

  94. Bezerra AS, D’Ippolito G, Faintuch S, Szejnfeld J, Ahmed M. Determination of splenomegaly by CT: is there a place for a single measurement? AJR Am J Roentgenol. 2005;184(5):1510–3.

    Article  PubMed  Google Scholar 

  95. Kashimura M, Noro M, Akikusa B, Okuhara A, Momose S, Miura I, et al. Primary splenic diffuse large B-cell lymphoma manifesting in red pulp. Virchows Arch. 2008;453(5):501–9.

    Article  PubMed  Google Scholar 

  96. Shimono J, Miyoshi H, Kamimura T, Eto T, Miyagishima T, Sasaki Y, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol. 2017;96(12):2063–70.

    Article  PubMed  Google Scholar 

  97. Shimono J, Miyoshi H, Kiyasu J, Sato K, Kamimura T, Eto T, et al. Clinicopathological analysis of primary splenic diffuse large B-cell lymphoma. Br J Haematol. 2017;178(5):719–27.

    Article  CAS  PubMed  Google Scholar 

  98. Bednaruk-Mlynski E, Pienkowska J, Skorzak A, Malkowski B, Kulikowski W, Subocz E, et al. Comparison of positron emission tomography/computed tomography with classical contrast-enhanced computed tomography in the initial staging of Hodgkin lymphoma. Leuk Lymphoma. 2015;56(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  99. de Jong PA, van Ufford HM, Baarslag HJ, de Haas MJ, Wittebol SH, Quekel LG, et al. CT and 18F-FDG PET for noninvasive detection of splenic involvement in patients with malignant lymphoma. AJR Am J Roentgenol. 2009;192(3):745–53.

    Article  PubMed  Google Scholar 

  100. Berzaczy D, Haug AR, Raderer M, Kiesewetter B, Berzaczy G, Weber M, et al. Is there a reliable size cut-off for splenic involvement in lymphoma? A [18F]FDG-PET controlled study. PLoS One. 2019;14(3):e0213551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu LM, Chen FY, Jiang XX, Gu HY, Yin Y, Xu JR. 18F-FDG PET, combined FDG-PET/CT and MRI for evaluation of bone marrow infiltration in staging of lymphoma: a systematic review and meta-analysis. Eur J Radiol. 2012;81(2):303–11.

    Article  PubMed  Google Scholar 

  102. Adams HJ, Kwee TC, de Keizer B, Fijnheer R, de Klerk JM, Littooij AS, et al. Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed Hodgkin lymphoma: is bone marrow biopsy still necessary? Ann Oncol. 2014;25(5):921–7.

    Article  CAS  PubMed  Google Scholar 

  103. Trotman J, Luminari S, Boussetta S, Versari A, Dupuis J, Tychyj C, et al. Prognostic value of PET-CT after first-line therapy in patients with follicular lymphoma: a pooled analysis of central scan review in three multicentre studies. Lancet Haematol. 2014;1(1):e17–27.

    Article  PubMed  Google Scholar 

  104. Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A, et al. Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res. 2014;20(24):6398–405.

    Article  CAS  PubMed  Google Scholar 

  105. Pyo J, Won Kim K, Jacene HA, Sakellis CG, Brown JR, Van den Abbeele AD. End-therapy positron emission tomography for treatment response assessment in follicular lymphoma: a systematic review and meta-analysis. Clin Cancer Res. 2013;19(23):6566–77.

    Article  CAS  PubMed  Google Scholar 

  106. Dreyling M, Ghielmini M, Rule S, Salles G, Vitolo U, Ladetto M. Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(Suppl 5):v83–90.

    Article  CAS  PubMed  Google Scholar 

  107. Whang-Peng J, Bunn PA Jr, Knutsen T, Matthews MJ, Schechter G, Minna JD. Clinical implications of cytogenetic studies in cutaneous T-cell lymphoma (CTCL). Cancer. 1982;50(8):1539–53.

    Article  CAS  PubMed  Google Scholar 

  108. Sezary A, Bouvrain Y. Erythrodermie avec présence de cellules monstrueses dans le derme et dans lang circulant. Bull Soc Fr Dermatol Syphiligr. 1938;45:254–60.

    Google Scholar 

  109. Pinkus GS, Said JW, Hargreaves H. Malignant lymphoma, T-cell type. A distinct morphologic variant with large multilobated nuclei, with a report of four cases. Am J Clin Pathol. 1979;72(4):540–50.

    Article  CAS  PubMed  Google Scholar 

  110. Wang SS, Vose JM. Epidemiology and prognosis of T-cell lymphoma. In: Foss F, editor. T-cell lymphomas. Totowa, NJ: Humana; 2013.

    Google Scholar 

  111. Daly PA, O’Briain DS, Robinson I, Guckian M, Prichard JS. Hodgkin’s disease with a granulomatous pulmonary presentation mimicking sarcoidosis. Thorax. 1988;43(5):407–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Geskin LJ. Cutaneous T-cell lymphoma (mycosis fungoides and SéZary syndrome). In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. 9th ed. New York, NY: McGraw-Hill Education; 2015.

    Google Scholar 

  113. Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22.

    Article  CAS  PubMed  Google Scholar 

  114. Lee HJ, Im JG, Goo JM, Kim KW, Choi BI, Chang KH, et al. Peripheral T-cell lymphoma: spectrum of imaging findings with clinical and pathologic features. Radiographics. 2003;23(1):7–26; discussion 26-8.

    Article  PubMed  Google Scholar 

  115. Casulo C, Schoder H, Feeney J, Lim R, Maragulia J, Zelenetz AD, et al. 18F-fluorodeoxyglucose positron emission tomography in the staging and prognosis of T cell lymphoma. Leuk Lymphoma. 2013;54(10):2163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim CY, Hong CM, Kim DH, Son SH, Jeong SY, Lee SW, et al. Prognostic value of whole-body metabolic tumour volume and total lesion glycolysis measured on (1)(8)F-FDG PET/CT in patients with extranodal NK/T-cell lymphoma. Eur J Nucl Med Mol Imaging. 2013;40(9):1321–9.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou X, Lu K, Geng L, Li X, Jiang Y, Wang X. Utility of PET/CT in the diagnosis and staging of extranodal natural killer/T-cell lymphoma: a systematic review and meta-analysis. Medicine. 2014;93(28):e258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiang C, Su M, Kosik RO, Zou L, Jiang M, Tian R. The Deauville 5-point scale improves the prognostic value of interim FDG PET/CT in extranodal natural killer/T-cell lymphoma. Clin Nucl Med. 2015;40(10):767–73.

    Article  PubMed  Google Scholar 

  119. Jiang C, Zhang X, Jiang M, Zou L, Su M, Kosik RO, et al. Assessment of the prognostic capacity of pretreatment, interim, and post-therapy (18)F-FDG PET/CT in extranodal natural killer/T-cell lymphoma, nasal type. Ann Nucl Med. 2015;29(5):442–51.

    Article  CAS  PubMed  Google Scholar 

  120. Zhou Z, Chen C, Li X, Li Z, Zhang X, Chang Y, et al. Evaluation of bone marrow involvement in extranodal NK/T cell lymphoma by FDG-PET/CT. Ann Hematol. 2015;94(6):963–7.

    Article  CAS  PubMed  Google Scholar 

  121. Chang Y, Fu X, Sun Z, Xie X, Wang R, Li Z, et al. Utility of baseline, interim and end-of-treatment (18)F-FDG PET/CT in extranodal natural killer/T-cell lymphoma patients treated with L-asparaginase/pegaspargase. Sci Rep. 2017;7:41057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shao D, Gao Q, Liang CH, Wang SX. Discussion of 18F-FDG PET/CT imaging characteristics and diagnostic values of angioimmunoblastic T-cell lymphoma. Leuk Lymphoma. 2017;58(7):1581–8.

    Article  CAS  PubMed  Google Scholar 

  123. Wang H, Shen G, Jiang C, Li L, Cui F, Tian R. Prognostic value of baseline, interim and end-of-treatment 18F-FDG PET/CT parameters in extranodal natural killer/T-cell lymphoma: a meta-analysis. PLoS One. 2018;13(3):e0194435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Horwitz S, Coiffier B, Foss F, Prince HM, Sokol L, Greenwood M, et al. Utility of (1)(8)fluoro-deoxyglucose positron emission tomography for prognosis and response assessments in a phase 2 study of romidepsin in patients with relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26(4):774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. El-Galaly TC, Pedersen MB, Hutchings M, Mylam KJ, Madsen J, Gang AO, et al. Utility of interim and end-of-treatment PET/CT in peripheral T-cell lymphomas: a review of 124 patients. Am J Hematol. 2015;90(11):975–80.

    Article  PubMed  Google Scholar 

  126. Tomita N, Hattori Y, Fujisawa S, Hashimoto C, Taguchi J, Takasaki H, et al. Post-therapy (18)F-fluorodeoxyglucose positron emission tomography for predicting outcome in patients with peripheral T cell lymphoma. Ann Hematol. 2015;94(3):431–6.

    Article  CAS  PubMed  Google Scholar 

  127. Mehta-Shah N, Ito K, Bantilan K, Moskowitz AJ, Sauter C, Horwitz SM, et al. Baseline and interim functional imaging with PET effectively risk stratifies patients with peripheral T-cell lymphoma. Blood Adv. 2019;3(2):187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tiemann M, Schrader C, Klapper W, Dreyling MH, Campo E, Norton A, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131(1):29–38.

    Article  PubMed  Google Scholar 

  129. Weigert O, Unterhalt M, Hiddemann W, Dreyling M. Current management of mantle cell lymphoma. Drugs. 2007;67(12):1689–702.

    Article  CAS  PubMed  Google Scholar 

  130. Bosch F, Lopez-Guillermo A, Campo E, Ribera JM, Conde E, Piris MA, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer. 1998;82(3):567–75.

    Article  CAS  PubMed  Google Scholar 

  131. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood. 1997;89(6):2067–78.

    Article  CAS  PubMed  Google Scholar 

  132. Gill S, Wolf M, Prince HM, Januszewicz H, Ritchie D, Hicks RJ, et al. [18F]fluorodeoxyglucose positron emission tomography scanning for staging, response assessment, and disease surveillance in patients with mantle cell lymphoma. Clin Lymphoma Myeloma. 2008;8(3):159–65.

    Article  PubMed  Google Scholar 

  133. Hosein PJ, Pastorini VH, Paes FM, Eber D, Chapman JR, Serafini AN, et al. Utility of positron emission tomography scans in mantle cell lymphoma. Am J Hematol. 2011;86(10):841–5.

    Article  PubMed  Google Scholar 

  134. Kedmi M, Avivi I, Ribakovsky E, Benyamini N, Davidson T, Goshen E, et al. Is there a role for therapy response assessment with 2-[fluorine-18]fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in mantle cell lymphoma? Leuk Lymphoma. 2014;55(11):2484–9.

    Article  CAS  PubMed  Google Scholar 

  135. Bruzzi JF, Macapinlac H, Tsimberidou AM, Truong MT, Keating MJ, Marom EM, et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med. 2006;47(8):1267–73.

    PubMed  Google Scholar 

  136. Falchi L, Keating MJ, Marom EM, Truong MT, Schlette EJ, Sargent RL, et al. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood. 2014;123(18):2783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schoder H, Noy A, Gonen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(21):4643–51.

    Article  PubMed  Google Scholar 

  138. Bodet-Milin C, Kraeber-Bodere F, Moreau P, Campion L, Dupas B, Le Gouill S. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93(3):471–2.

    Article  PubMed  Google Scholar 

  139. Hoffmann M, Kletter K, Becherer A, Jager U, Chott A, Raderer M. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) for staging and follow-up of marginal zone B-cell lymphoma. Oncology. 2003;64(4):336–40.

    Article  CAS  PubMed  Google Scholar 

  140. Jerusalem GH, Beguin YP. Positron emission tomography in non-Hodgkin’s lymphoma (NHL): relationship between tracer uptake and pathological findings, including preliminary experience in the staging of low-grade NHL. Clin Lymphoma. 2002;3(1):56–61.

    Article  PubMed  Google Scholar 

  141. Borhani AA, Hosseinzadeh K, Almusa O, Furlan A, Nalesnik M. Imaging of posttransplantation lymphoproliferative disorder after solid organ transplantation. Radiographics. 2009;29(4):981–1000; discussion 1000−2.

    Article  PubMed  Google Scholar 

  142. Loren AW, Porter DL, Stadtmauer EA, Tsai DE. Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transplant. 2003;31(3):145–55.

    Article  CAS  PubMed  Google Scholar 

  143. Tsai DE, Aqui NA, Vogl DT, Bloom RD, Schuster SJ, Nasta SD, et al. Successful treatment of T-cell post-transplant lymphoproliferative disorder with the retinoid analog bexarotene. Am J Transplant. 2005;5(8):2070–3.

    Article  PubMed  Google Scholar 

  144. Birsen R, Blanc E, Burroni B, Broudin C, Willems L, Legoff M, Leray E, Pilorge S, Salah S, Quentin A, Deau-Fisher B, Franchi P, Vignon M, Mabille L, Nguyen C, Kirova Y, Varlet P, Tauziede-Espariat A, Edjlali M, Edouard D, Hoang-Xuan K, Houillier C, Soussain C, Pallud J, Damotte D, Bouscary D, Tamburini Bonnefoy J. Prognostic value of early 18F-FDG PET/CT scanner evaluation in immunocompetent primary CNS lymphoma patients. Blood. 2017;130:4169. http://www.bloodjournal.org/content/130/Suppl_1/4169

    Google Scholar 

  145. McCormack L, Hany TI, Hubner M, Petrowsky H, Mullhaupt B, Knuth A, et al. How useful is PET/CT imaging in the management of post-transplant lymphoproliferative disease after liver transplantation? Am J Transplant. 2006;6(7):1731–6.

    Article  CAS  PubMed  Google Scholar 

  146. Bianchi E, Pascual M, Nicod M, Delaloye AB, Duchosal MA. Clinical usefulness of FDG-PET/CT scan imaging in the management of posttransplant lymphoproliferative disease. Transplantation. 2008;85(5):707–12.

    Article  PubMed  Google Scholar 

  147. Takehana CS, Twist CJ, Mosci C, Quon A, Mittra E, Iagaru A. (18)F-FDG PET/CT in the management of patients with post-transplant lymphoproliferative disorder. Nucl Med Commun. 2014;35(3):276–81.

    Article  PubMed  Google Scholar 

  148. Metser U, Lo G. FDG-PET/CT in abdominal post-transplant lymphoproliferative disease. Br J Radiol. 2016;89(1057):20150844.

    Article  PubMed  Google Scholar 

  149. Friedberg JW, Mauch PM, Rimsza LM, Fisher RI. Non-Hodgkin’s lymphomas. In: DeVita VT, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman, and Rosenberg’s cancer: principles and practice of oncology. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  150. Kostakoglu L, Cheson BD. Current role of FDG PET/CT in lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(5):1004–27.

    Article  PubMed  Google Scholar 

  151. Thill R, Neuerburg J, Fabry U, Cremerius U, Wagenknecht G, Hellwig D, et al. [Comparison of findings with 18-FDG PET and CT in pretherapeutic staging of malignant lymphoma]. Nuklearmedizin. 1997;36(7):234–239.

    Article  PubMed  Google Scholar 

  152. Rodriguez M, Ahlstrom H, Sundin A, Rehn S, Sundstrom C, Hagberg H, et al. [18F] FDG PET in gastric non-Hodgkin’s lymphoma. Acta Oncol. 1997;36(6):577–84.

    Article  CAS  PubMed  Google Scholar 

  153. Paes FM, Kalkanis DG, Sideras PA, Serafini AN. FDG PET/CT of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease. Radiographics. 2010;30(1):269–91.

    Article  PubMed  Google Scholar 

  154. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Villano JL, Koshy M, Shaikh H, Dolecek TA, McCarthy BJ. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer. 2011;105(9):1414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. O’Neill BP, Decker PA, Tieu C, Cerhan JR. The changing incidence of primary central nervous system lymphoma is driven primarily by the changing incidence in young and middle-aged men and differs from time trends in systemic diffuse large B-cell non-Hodgkin’s lymphoma. Am J Hematol. 2013;88(12):997–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rosenfeld SS, Hoffman JM, Coleman RE, Glantz MJ, Hanson MW, Schold SC. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography. J Nucl Med. 1992;33(4):532–6.

    CAS  PubMed  Google Scholar 

  158. Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. Am J Roentgenol. 2008;190(6):W365–W9.

    Article  Google Scholar 

  159. Kawai N, Miyake K, Yamamoto Y, Nishiyama Y, Tamiya T. 18F-FDG PET in the diagnosis and treatment of primary central nervous system lymphoma. J Biomed Res Int. 2013;2013:8.

    Google Scholar 

  160. Mohile NA, Deangelis LM, Abrey LE. Utility of brain FDG-PET in primary CNS lymphoma. Clin Adv Hematol Oncol. 2008;6(11):818–20, 40.

    PubMed  Google Scholar 

  161. Chiavazza C, Pellerino A, Ferrio F, Cistaro A, Soffietti R, Rudà R, et al. Primary CNS lymphomas: challenges in diagnosis and monitoring. J Biomed Res Int. 2018;2018:16.

    Google Scholar 

  162. Kawai N, Zhen H-N, Miyake K, Yamamaoto Y, Nishiyama Y, Tamiya T. Prognostic value of pretreatment 18F-FDG PET in patients with primary central nervous system lymphoma: SUV-based assessment. J Neurooncol. 2010;100(2):225–32.

    Article  PubMed  Google Scholar 

  163. Abrey LE, Batchelor TT, Ferreri AJM, Gospodarowicz M, Pulczynski EJ, Zucca E, et al. Report of an International Workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol. 2005;23(22):5034–43.

    Article  PubMed  Google Scholar 

  164. Palmedo H, Urbach H, Bender H, Schlegel U, Schmidt-Wolf IGH, Matthies A, et al. FDG-PET in immunocompetent patients with primary central nervous system lymphoma: correlation with MRI and clinical follow-up. Eur J Nucl Med Mol Imaging. 2006;33(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  165. Birsen R, Blanc E, Willems L, Burroni B, Legoff M, Le Ray E, et al. Prognostic value of early 18F-FDG PET scanning evaluation in immunocompetent primary CNS lymphoma patients. Oncotarget. 2018;9(24):16822–31.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cote TR, Manns A, Hardy CR, Yellin FJ, Hartge P. Epidemiology of brain lymphoma among people with or without acquired immunodeficiency syndrome. AIDS/Cancer Study Group. J Natl Cancer Inst. 1996;88(10):675–9.

    Article  CAS  PubMed  Google Scholar 

  167. Skiest DJ, Erdman W, Chang WE, Oz OK, Ware A, Fleckenstein J. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infect. 2000;40(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  168. D’Amico A, Messa C, Castagna A, Zito F, Galli L, Pepe G, et al. Diagnostic accuracy and predictive value of 201T1 SPET for the differential diagnosis of cerebral lesions in AIDS patients. Nucl Med Commun. 1997;18(8):741–50.

    Article  PubMed  Google Scholar 

  169. Antinori A, De Rossi G, Ammassari A, Cingolani A, Murri R, Di Giuda D, et al. Value of combined approach with thallium-201 single-photon emission computed tomography and Epstein-Barr virus DNA polymerase chain reaction in CSF for the diagnosis of AIDS-related primary CNS lymphoma. J Clin Oncol. 1999;17(2):554–60.

    Article  CAS  PubMed  Google Scholar 

  170. Vidan E, Kostakoglu L, Goldsmith S. Superiority of F-18 FDG PET over Tl-201 SPECT in the evaluation of AIDS-associated brain lesions. J Nucl Med. 2006;47(suppl 1):238P.

    Google Scholar 

  171. Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7(5):337–46.

    Article  CAS  PubMed  Google Scholar 

  172. Westwood TD, Hogan C, Julyan PJ, Coutts G, Bonington S, Carrington B, et al. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients. Eur J Radiol. 2013;82(8):e374–9.

    Article  PubMed  Google Scholar 

  173. Singh T, Satheesh CT, Lakshmaiah KC, Suresh TM, Babu GK, Lokanatha D, et al. Primary bone lymphoma: a report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8.

    Article  PubMed  Google Scholar 

  174. Mulligan ME, McRae GA, Murphey MD. Imaging features of primary lymphoma of bone. Am J Roentgenol. 1999;173(6):1691–7.

    Article  CAS  Google Scholar 

  175. Wang LJ, Wu HB, Wang M, Han YJ, Li HS, Zhou WL, et al. Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol. 2015;84(11):2275–9.

    Article  PubMed  Google Scholar 

  176. Ahmann DL, Kiely JM, Harrison EG Jr, Payne WS. Malignant lymphoma of the spleen. A review of 49 cases in which the diagnosis was made at splenectomy. Cancer. 1966;19(4):461–9.

    Article  CAS  PubMed  Google Scholar 

  177. Grosskreutz C, Troy K, Cuttner J. Primary splenic lymphoma: report of 10 cases using the REAL classification. Cancer Investig. 2002;20(5–6):749–53.

    Article  Google Scholar 

  178. Karunanithi S, Sharma P, Roy SG, Vettiyil B, Sharma A, Thulkar S, et al. Use of 18F-FDG PET/CT imaging for evaluation of patients with primary splenic lymphoma. Clin Nucl Med. 2014;39(9):772–6.

    Article  PubMed  Google Scholar 

  179. Diehl V, Franklin J, Pfreundschuh M, Lathan B, Paulus U, Hasenclever D, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95.

    Article  CAS  PubMed  Google Scholar 

  180. Kobe C, Dietlein M, Franklin J, Markova J, Lohri A, Amthauer H, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood. 2008;112(10):3989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Andre MPE, Girinsky T, Federico M, Reman O, Fortpied C, Gotti M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94.

    Article  CAS  PubMed  Google Scholar 

  182. Gallamini A, Patti C, Viviani S, Rossi A, Fiore F, Di Raimondo F, et al. Early chemotherapy intensification with BEACOPP in advanced-stage Hodgkin lymphoma patients with a interim-PET positive after two ABVD courses. Br J Haematol. 2011;152(5):551–60.

    Article  PubMed  Google Scholar 

  183. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Meyer RM, Gospodarowicz MK, Connors JM, Pearcey RG, Bezjak A, Wells WA, et al. Randomized comparison of ABVD chemotherapy with a strategy that includes radiation therapy in patients with limited-stage Hodgkin’s lymphoma: National Cancer Institute of Canada Clinical Trials Group and the Eastern Cooperative Oncology Group. J Clin Oncol. 2005;23(21):4634–42.

    Article  CAS  PubMed  Google Scholar 

  185. Press OW, Li H, Schoder H, Straus DJ, Moskowitz CH, LeBlanc M, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34(17):2020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607.

    Article  CAS  PubMed  Google Scholar 

  187. Raemaekers JM, Andre MP, Federico M, Girinsky T, Oumedaly R, Brusamolino E, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–94.

    Article  PubMed  Google Scholar 

  188. Straus DJ, Jung SH, Pitcher B, Kostakoglu L, Grecula JC, Hsi ED, et al. CALGB 50604: risk-adapted treatment of nonbulky early-stage Hodgkin lymphoma based on interim PET. Blood. 2018;132(10):1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hindie E, Mesguich C, Bouabdallah K, Milpied N. Advanced Hodgkin’s lymphoma: end-of-treatment FDG-PET should be maintained. Eur J Nucl Med Mol Imaging. 2017;44(8):1254–7.

    Article  CAS  PubMed  Google Scholar 

  190. Mesguich C, Cazeau AL, Bouabdallah K, Soubeyran P, Guyot M, Milpied N, et al. Hodgkin lymphoma: a negative interim-PET cannot circumvent the need for end-of-treatment-PET evaluation. Br J Haematol. 2016;175(4):652–60.

    Article  PubMed  Google Scholar 

  191. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.

    Article  CAS  PubMed  Google Scholar 

  192. Markova J, Kahraman D, Kobe C, Skopalova M, Mocikova H, Klaskova K, et al. Role of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in early and late therapy assessment of patients with advanced Hodgkin lymphoma treated with bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine and prednisone. Leuk Lymphoma. 2012;53(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  193. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol. 2001;12(1):29–37.

    Article  PubMed  Google Scholar 

  194. Spaepen K, Stroobants S, Dupont P, Thomas J, Vandenberghe P, Balzarini J, et al. Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol. 2001;115(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  195. Weihrauch MR, Re D, Scheidhauer K, Ansen S, Dietlein M, Bischoff S, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98(10):2930–4.

    Article  CAS  PubMed  Google Scholar 

  196. Cerci JJ, Pracchia LF, Linardi CC, Pitella FA, Delbeke D, Izaki M, et al. 18F-FDG PET after 2 cycles of ABVD predicts event-free survival in early and advanced Hodgkin lymphoma. J Nucl Med. 2010;51(9):1337–43.

    Article  CAS  PubMed  Google Scholar 

  197. Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9.

    Article  CAS  PubMed  Google Scholar 

  198. Micallef IN, Maurer MJ, Wiseman GA, Nikcevich DA, Kurtin PJ, Cannon MW, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Spaepen K, Stroobants S, Dupont P, Van Steenweghen S, Thomas J, Vandenberghe P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19(2):414–9.

    Article  CAS  PubMed  Google Scholar 

  200. Zinzani PL, Rigacci L, Stefoni V, Broccoli A, Puccini B, Castagnoli A, et al. Early interim 18F-FDG PET in Hodgkin’s lymphoma: evaluation on 304 patients. Eur J Nucl Med Mol Imaging. 2012;39(1):4–12.

    Article  PubMed  Google Scholar 

  201. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31(11):1860–1.

    CAS  PubMed  Google Scholar 

  202. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244.

    Article  CAS  PubMed  Google Scholar 

  203. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86.

    Article  PubMed  Google Scholar 

  204. Cheson BD. The International Harmonization Project for response criteria in lymphoma clinical trials. Hematol Oncol Clin North Am. 2007;21(5):841–54.

    Article  PubMed  Google Scholar 

  205. Barrington SF, Qian W, Somer EJ, Franceschetto A, Bagni B, Brun E, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.

    Article  PubMed  Google Scholar 

  206. Younes A, Hilden P, Coiffier B, Hagenbeek A, Salles G, Wilson W, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017;28(7):1436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hasenclever D, Kurch L, Mauz-Korholz C, Elsner A, Georgi T, Wallace H, et al. qPET—a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(7):1301–8.

    Article  PubMed  Google Scholar 

  208. Rossi C, Kanoun S, Berriolo-Riedinger A, Dygai-Cochet I, Humbert O, Legouge C, et al. Interim 18F-FDG PET SUVmax reduction is superior to visual analysis in predicting outcome early in Hodgkin lymphoma patients. J Nucl Med. 2014;55(4):569–73.

    Article  CAS  PubMed  Google Scholar 

  209. Sattarivand M, Caldwell C, Poon I, Soliman H, Mah K. Effects of ROI placement on PET-based assessment of tumor response to therapy. Int J Mol Imaging. 2013;2013:132804.

    PubMed  PubMed Central  Google Scholar 

  210. Kostakoglu L, Chauvie S. Metabolic tumor volume metrics in lymphoma. Semin Nucl Med. 2018;48(1):50–66.

    Article  PubMed  Google Scholar 

  211. Song M-K, Chung J-S, Lee J-J, Jeong SY, Lee S-M, Hong J-S, et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci. 2013;104(12):1656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kanoun S, Rossi C, Berriolo-Riedinger A, Dygai-Cochet I, Cochet A, Humbert O, et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(9):1735–43.

    Article  PubMed  Google Scholar 

  213. Tseng D, Rachakonda LP, Su Z, Advani R, Horning S, Hoppe RT, et al. Interim-treatment quantitative PET parameters predict progression and death among patients with Hodgkin’s disease. Radiat Oncol. 2012;7(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Cherk MH, Pham A, Haydon A. 18F-fluorodeoxyglucose positron emission tomography-positive sarcoidosis after chemoradiotherapy for Hodgkin’s disease: a case report. J Med Case Rep. 2011;5:247.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Subbiah V, Ly UK, Khiyami A, O’Brien T. Tissue is the issue-sarcoidosis following ABVD chemotherapy for Hodgkin’s lymphoma: a case report. J Med Case Rep. 2007;1:148.

    Article  PubMed  PubMed Central  Google Scholar 

  216. London J, Grados A, Ferme C, Charmillon A, Maurier F, Deau B, et al. Sarcoidosis occurring after lymphoma: report of 14 patients and review of the literature. Medicine. 2014;93(21):e121.

    Article  PubMed  PubMed Central  Google Scholar 

  217. de Hemricourt E, De Boeck K, Hilte F, Abib A, Kockx M, Vandevivere J, et al. Sarcoidosis and sarcoid-like reaction following Hodgkin’s disease. Report of two cases. Mol Imaging Biol. 2003;5(1):15–9.

    Article  PubMed  Google Scholar 

  218. Koo HJ, Kim MY, Shin SY, Shin S, Kim SS, Lee SW, et al. Evaluation of mediastinal lymph nodes in sarcoidosis, sarcoid reaction, and malignant lymph nodes using CT and FDG-PET/CT. Medicine. 2015;94(27):e1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mustafa M, Patel D, Shen L, Shetty A, Mansberg R. Granulomatous lymphangitis masquerading as relapsed Hodgkin disease on FDG PET/CT. Tomography. 2018;4(1):1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Talcott JA, Garnick MB, Stomper PC, Godleski JJ, Richie JP. Cavitary lung nodules associated with combination chemotherapy containing bleomycin. J Urol. 1987;138(3):619–20.

    Article  CAS  PubMed  Google Scholar 

  221. Brincker H. The sarcoidosis-lymphoma syndrome. Br J Cancer. 1986;54(3):467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wilgenhof S, Morlion V, Seghers AC, Du Four S, Vanderlinden E, Hanon S, et al. Sarcoidosis in a patient with metastatic melanoma sequentially treated with anti-CTLA-4 monoclonal antibody and selective BRAF inhibitor. Anticancer Res. 2012;32(4):1355–9.

    CAS  PubMed  Google Scholar 

  223. Montaudie H, Pradelli J, Passeron T, Lacour JP, Leroy S. Pulmonary sarcoid-like granulomatosis induced by nivolumab. Br J Dermatol. 2017;176(4):1060–3.

    Article  CAS  PubMed  Google Scholar 

  224. Cousin S, Toulmonde M, Kind M, Cazeau AL, Bechade D, Coindre JM, et al. Pulmonary sarcoidosis induced by the anti-PD1 monoclonal antibody pembrolizumab. Ann Oncol. 2016;27(6):1178–9.

    Article  CAS  PubMed  Google Scholar 

  225. Koss MN. Pulmonary lymphoid disorders. Semin Diagn Pathol. 1995;12(2):158–71.

    CAS  PubMed  Google Scholar 

  226. Murphy SP, Nathan MA, Karwal MW. FDG-PET appearance of pelvic Castleman’s disease. J Nucl Med. 1997;38(8):1211–2.

    CAS  PubMed  Google Scholar 

  227. Reddy MP, Graham MM. FDG positron emission tomographic imaging of thoracic Castleman’s disease. Clin Nucl Med. 2003;28(4):325–6.

    PubMed  Google Scholar 

  228. An YS, Yoon JK, Lee SJ, Jeong SH, Lee HW. Clinical significance of post-treatment (18)F-fluorodeoxyglucose uptake in cervical lymph nodes in patients with diffuse large B-cell lymphoma. Eur Radiol. 2016;26(12):4632–9.

    Article  PubMed  Google Scholar 

  229. Chiang SB, Rebenstock A, Guan L, Burns J, Alavi A, Zhuang H. Potential false-positive FDG PET imaging caused by subcutaneous radiotracer infiltration. Clin Nucl Med. 2003;28(9):786–8.

    Article  PubMed  Google Scholar 

  230. Wagner T, Brucher N, Julian A, Hitzel A. A false-positive finding in therapeutic evaluation: hypermetabolic axillary lymph node in a lymphoma patient following FDG extravasation. Nucl Med Rev Cent East Eur. 2011;14(2):109–11.

    Article  PubMed  Google Scholar 

  231. Tsamita CS, Golemi A, Egesta L, Castellucci P, Nanni C, Stefoni V, et al. Clinical significance of axillary findings in patients with lymphoma during follow-up with 18F-fluorodeoxyglucose-PET. Nucl Med Commun. 2008;29(8):705–10.

    Article  CAS  PubMed  Google Scholar 

  232. Muthukrishnan A, Joyce JM, Islam M. Follicular hyperplasia: a potential false-positive finding on PET/CT imaging in the evaluation of lymphoma. Clin Nucl Med. 2006;31(7):401–2.

    Article  PubMed  Google Scholar 

  233. Ranganath P, Kapila R, Vadehra V, Wang Q, Capitle E, Ghesani N. Generalized lymphadenopathy and 18-fluorine fluorodeoxyglucose positron emission tomography/computed tomography targeting diagnostic intervention, characterizing disease extent, and assessing treatment efficacy in syphilis. Sex Transm Dis. 2015;42(2):68–70.

    Article  CAS  PubMed  Google Scholar 

  234. Shrestha D, Dhakal AK, Raj KCS, Shakya A, Shah SC, Shakya H. Systemic lupus erythematosus and granulomatous lymphadenopathy. BMC Pediatr. 2013;13:179.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Haroon A, Zumla A, Bomanji J. Role of fluorine 18 fluorodeoxyglucose positron emission tomography-computed tomography in focal and generalized infectious and inflammatory disorders. Clin Infect Dis. 2012;54(9):1333–41.

    Article  CAS  PubMed  Google Scholar 

  236. Patel PM, Alibazoglu H, Ali A, Fordham E, LaMonica G. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med. 1996;21(10):772–5.

    Article  CAS  PubMed  Google Scholar 

  237. Weinblatt ME, Zanzi I, Belakhlef A, Babchyck B, Kochen J. False-positive FDG-PET imaging of the thymus of a child with Hodgkin’s disease. J Nucl Med. 1997;38(6):888–90.

    CAS  PubMed  Google Scholar 

  238. Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics. 2004;24(6):1611–6.

    Article  PubMed  Google Scholar 

  239. Kawano T, Suzuki A, Ishida A, Takahashi N, Lee J, Tayama Y, et al. The clinical relevance of thymic fluorodeoxyglucose uptake in pediatric patients after chemotherapy. Eur J Nucl Med Mol Imaging. 2004;31(6):831–6.

    Article  CAS  PubMed  Google Scholar 

  240. Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus gland studied with 18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42(4):591–5.

    CAS  PubMed  Google Scholar 

  241. Jerushalmi J, Frenkel A, Bar-Shalom R, Khoury J, Israel O. Physiologic thymic uptake of 18F-FDG in children and young adults: a PET/CT evaluation of incidence, patterns, and relationship to treatment. J Nucl Med. 2009;50(6):849–53.

    Article  PubMed  Google Scholar 

  242. Mayer D, Bednarczyk EM. Interaction of colony-stimulating factors and fluorodeoxyglucose F(18) positron emission tomography. Ann Pharmacother. 2002;36(11):1796–9.

    Article  CAS  PubMed  Google Scholar 

  243. Gea-Banacloche J, Komanduri KV, Carpenter P, Paczesny S, Sarantopoulos S, Young JA, et al. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune dysregulation and Pathobiology Working Group Report. Biol Blood Marrow Transplant. 2017;23(6):870–81.

    Article  PubMed  Google Scholar 

  244. Jacobsohn DA, Vogelsang GB. Acute graft versus host disease. Orphanet J Rare Dis. 2007;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ichiki Y, Bowlus CL, Shimoda S, Ishibashi H, Vierling JM, Gershwin ME. T cell immunity and graft-versus-host disease (GVHD). Autoimmun Rev. 2006;5(1):1–9.

    Article  PubMed  Google Scholar 

  246. Bower M, Palmieri C, Dhillon T. AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis. 2006;19(1):14–9.

    Article  PubMed  Google Scholar 

  247. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med. 1997;38(10):1575–83.

    PubMed  Google Scholar 

  248. Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics. 2005;25(5):1357–68.

    Article  PubMed  Google Scholar 

  249. Scharko AM, Perlman SB, Pyzalski RW, Graziano FM, Sosman J, Pauza CD. Whole-body positron emission tomography in patients with HIV-1 infection. Lancet. 2003;362(9388):959–61.

    Article  PubMed  Google Scholar 

  250. Bental M, Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med. 1993;29(3):317–26.

    Article  CAS  PubMed  Google Scholar 

  251. Liu YY. Demonstrations of AIDS-associated malignancies and infections at FDG PET-CT. Ann Nucl Med. 2011;25(8):536–46.

    Article  PubMed  Google Scholar 

  252. Mhlanga JC, Durand D, Tsai HL, Durand CM, Leal JP, Wang H, et al. Differentiation of HIV-associated lymphoma from HIV-associated reactive adenopathy using quantitative FDG PET and symmetry. Eur J Nucl Med Mol Imaging. 2014;41(4):596–604.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Ghesani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghesani, N., Gavane, S., Hafez, A., Kostakoglu, L. (2020). PET in Lymphoma. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics