Skip to main content

18F-FDG-PET/CT in Breast and Gynecologic Cancer

  • Chapter
  • First Online:

Abstract

This chapter details the role of 18F-FDG-PET/CT in the diagnosis, treatment planning, evaluation of response to therapy, and assessment for recurrent disease in breast cancer as well as the most common gynecologic cancers in women (endometrial, cervical, and ovarian). Although 18F-FDG-PET/CT does not currently play a significant role in the primary diagnosis of any of these malignancies, PET/CT performed as part of disease staging can provide valuable information regarding the extent of disease. Metabolic imaging with PET is particularly valuable in detecting metastatic disease in lymph nodes that are not enlarged by CT or MRI size criteria. 18F-FDG-PET/CT can be utilized to assess both early treatment response and response following the completion of therapy for patients with breast and gynecologic cancers. For some female-related malignancies, patterns of 18F-FDG uptake on staging scans, as well as post-therapy scans, may provide information prognostic of disease-free survival. Finally, we explore selected promising PET radiotracers aimed at characterizing specific biology of the disease to help guide treatment and therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Howell A, Anderson AS, Clarke RB, Duffy SW, Evans DG, Garcia-Closas M, Gescher AJ, Key TJ, Saxton JM, Harvie MN. Risk determination and prevention of breast cancer. Breast Cancer Res. 2014;16(5):1–19.

    Article  CAS  Google Scholar 

  3. Schnitt SJ. Traditional and newer pathologic factors. JNCI Monogr. 2001;2001(30):22–6.

    Article  Google Scholar 

  4. Walker RA. Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol. 2008;61(6):689–96.

    Article  CAS  PubMed  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale A-L, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;533:747–52.

    Article  Google Scholar 

  6. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, Hayes MK, Copit DS, Carlson KL, Cink TM, Barke LD, Greer LN, Miller DP, Conant EF. Breast Cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.

    Article  CAS  PubMed  Google Scholar 

  7. McDonald ES, McCarthy AM, Akhtar A, Synnestvedt MB, Schnall M, Conant EF. Baseline screening mammography: performance of full-field digital mammography versus digital breast Tomosynthesis. AJR. 2015;205:1143–8.

    Article  PubMed  Google Scholar 

  8. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, Izadi M, Jebsen IN, Krager M, Niklason L, Hofvind S, Gur D. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.

    Article  PubMed  Google Scholar 

  9. Mainiero MB, Lourenco A, Mahoney MC, Newell MS, Bailey L, Barke LD, D’Orsi C, Harvey JA, Hayes MK, Huynh PT, Jokich PM, Lee S-J, Lehman CD, Mankoff DA, Nepute JA, Patel SB, Reynolds HE, Sutherland ML, Haffty BG. ACR appropriateness criteria breast cancer screening. J Am Coll Radiol. 2013;10(1):11–4.

    Article  PubMed  Google Scholar 

  10. Edge S, Byrd D, Compton C, Green F, Trotti A. AJCC cancer staging manual. 7th ed. New York, NY: Springer; 2010.

    Google Scholar 

  11. Newman EA, Newman LA. Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. Surg Clin N Am. 2007;87(2):353–64.

    Article  PubMed  Google Scholar 

  12. Aarsvold JN, Alazraki NP. Update on detection of sentinel lymph nodes in patients with breast cancer. Seminars in Nuclear Medicine. 2005;35(2):116–28.

    Article  PubMed  Google Scholar 

  13. Azad AK, Rajaram MVS, Metz WL, Cope FO, Blue MS, Vera DR, Schlesinger LS. γ-Tilmanocept, a new radiopharmaceutical tracer for Cancer sentinel lymph nodes, binds to the mannose receptor (CD206). J Immunol. 2015;195(5):2019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH, Goetz M, Goldstein LJ, Hudis CA, Isakoff SJ, Marcom PK, Mayer IA, McCormick B, Moran M, Patel SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Smith KL, Smith Lou M, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R. Invasive breast cancer version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14(3):324–54.

    Article  PubMed  Google Scholar 

  15. Bos R, van Der Hoeven JJM, van Der Wall E, van Der Groep P, van Diest PJ, Comans EFI, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CFM. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002;20(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  16. Scheidhauer K, Walter C, Seemann MD. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging. 2004;31(0):S70–9.

    Article  PubMed  Google Scholar 

  17. Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics. 2007;27(Suppl 1):S215–29.

    Article  PubMed  Google Scholar 

  18. Wahl RL, Siegel BA, Coleman RE, Gatsonis CG, Group PETS. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast Cancer: a report of the staging breast cancer with PET study group. J Clin Oncol. 2003;22(2):277–85.

    Article  Google Scholar 

  19. Groheux D, Hindié E, Delord M, Giacchetti S, Hamy A, de Bazelaire C, de Roquancourt A, Vercellino L, Toubert M-E, Merlet P, Espié M. Prognostic impact of (18)FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012;104(24):1879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Byrd DR, Dunnwald LK, Mankoff DA, Anderson BO, Moe RE, Yeung RS, Schubert EK, Eary JF. Internal mammary lymph node drainage patterns in patients with breast cancer documented by breast lymphoscintigraphy. Ann Surg Oncol. 2001;8(3):234–40.

    Article  CAS  PubMed  Google Scholar 

  21. Tran A, Pio BS, Khatibi B, Czernin J, Phelps ME, Silverman DHS. 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer-quadrant tumors: comparison with long-term clinical outcome. J Nucl Med. 2005;46(9):1455–9.

    Google Scholar 

  22. Chia S, Swain SM, Byrd DR, Mankoff DA. Locally advanced and inflammatory breast cancer. J Clin Oncol. 2008;26(5):786–90.

    Article  PubMed  Google Scholar 

  23. Walker GV, Niikura N, Yang W, Rohren E, Valero V, Woodward WA, Alvarez RH, Lucci A, Ueno NT, Buchholz TA. Pretreatment staging positron emission tomography/computed tomography in patients with inflammatory breast cancer influences radiation treatment field designs. Int J Rad Oncol Biol Phys. 2012;83(5):1381–6.

    Article  Google Scholar 

  24. Jensen AØ, Jacobsen JB, Nørgaard M, Yong M, Fryzek JP, Sørensen HT. Incidence of bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark. BMC Cancer. 2011;11(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.

    Article  PubMed  Google Scholar 

  26. Schirrmeister H, Guhlmann A, Santjohanser C, Ku T, Kreienberg R, Messer P, Nu K, Elsner K, Glatting G, Tra H, Neumaier B, Diederichs C, Reske SN. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 2017;17(8):2381–9.

    Article  Google Scholar 

  27. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    Article  CAS  PubMed  Google Scholar 

  28. Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, Dickler M, Hudis CA, Jochelson M, McArthur HL. Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol. 2010;28(19):3154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mahner S, Schirrmacher S, Brenner W, Jenicke L, Habermann CR, Avril N, Dose-Schwarz J. Comparison between positron emission tomography using 2-[fluorine-18]fluoro-2-deoxy-D-glucose, conventional imaging and computed tomography for staging of breast cancer. Ann Oncol. 2008;19(7):1249–54.

    Article  CAS  PubMed  Google Scholar 

  30. Mankoff D, Dunnwald L, Gralow J, Ellis G, Drucker M, Livingston R. Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using technetium 99m-sestamibi scintimammography. Cancer. 1999;85:2410–23.

    Article  CAS  PubMed  Google Scholar 

  31. Tiling R, Linke R, Untch M. 18F-FDG PET and 99mTc-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med Mol Imaging. 2001;28:711–20.

    Article  CAS  Google Scholar 

  32. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.

    Article  CAS  PubMed  Google Scholar 

  33. Mankoff DA, Dunnwald LK. Changes in glucose metabolism and blood flow following chemotherapy for breast cancer. PET Clin. 2006;1(1):71–81.

    Article  PubMed  Google Scholar 

  34. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, Berton-Rigaud D, Bouriel C, Delecroix V, Garin E, Rouquette S, Resche I, Kerbrat P, Chatal JF, Campone M. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24(34):5366–72.

    Article  PubMed  Google Scholar 

  35. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast Cancer treated with high-Dose chemotherapy. J Clin Oncol. 2006;24(19):3026–31.

    Article  PubMed  Google Scholar 

  36. Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer. 2002;38(3):375–9.

    Article  CAS  PubMed  Google Scholar 

  37. Emmering J, Krak NC, Van der Hoeven JJM, Spreeuwenberg MD, Twisk JWR, Meijer S, Pinedo HM, Hoekstra OS. Preoperative [18F] FDG–PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol. 2008;19(9):1573–7.

    Article  CAS  PubMed  Google Scholar 

  38. Dehdashti F, Mortimer JE, Trinkaus K, Naughton MJ, Ellis M, Katzenellenbogen JA, Welch MJ, Siegel BA. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat. 2009;113(3):509–17.

    Article  CAS  PubMed  Google Scholar 

  39. Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA, Dickler MN, Silverman P, Crowder R, Siegel BA. Lower-dose vs high-dose oral estradiol therapy of hormone receptor–positive, aromatase inhibitor–resistant advanced breast cancer: a phase 2 randomized study. JAMA. 2009;302(7):774–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawada K, Murakami K, Sato T, Kojima Y, Ebi H, Mukai H, Tahara M, Shimokata K, Minami H. Prospective study of positron emission tomography for evaluation of the activity of lapatinib, a dual inhibitor of the ErbB1 and ErbB2 tyrosine kinases, in patients with advanced tumors. Jpn J Clin Oncol. 2007;37(1):44–8.

    Article  PubMed  Google Scholar 

  41. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29(8):1354–9.

    CAS  PubMed  Google Scholar 

  42. Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB, Mankoff DA. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol. 2002;9(8):913–21.

    Article  PubMed  Google Scholar 

  43. Specht JM, Tam SL, Kurland BF, Gralow JR, Livingston RB, Linden HM, Ellis GK, Schubert EK, Dunnwald LK, Mankoff DA. Serial 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat. 2007;105(1):87–94.

    Article  PubMed  Google Scholar 

  44. Emmering J, Krak NC, Van der Hoeven JJM, Spreeuwenberg MD, Twisk JWR, Meijer S, Pinedo HM, Hoekstra OS. Preoperative [18F] FDG–PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol. 2008;19(9):1573–7.

    Article  CAS  PubMed  Google Scholar 

  45. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA. Breast cancer: PET imaging of estrogen receptors. Radiology. 1988;169(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  46. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, Gown A, Link JM, Tewson T, Krohn KA. Quantitative imaging of estrogen receptor expression in breast Cancer with PET and 18F-Fluoroestradiol. J Nucl Med. 2008;49(3):367–74.

    Article  PubMed  Google Scholar 

  47. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, Detert DD, Cutler PD, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med. 1995;36(10):1766–74.

    CAS  PubMed  Google Scholar 

  48. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK, Krohn KA, Mankoff DA. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol. 2006;24(18):2793–9.

    Article  CAS  PubMed  Google Scholar 

  49. van Kruchten M, de Vries EG, Glaudemans AW, van Lanschot MC, van Faassen M, Kema IP, Brown M, Schröder CP, de Vries EF, Hospers GA. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov. 2015;5(1):72–81.

    Article  PubMed  CAS  Google Scholar 

  50. Linden HM, Kurland BF, Peterson LM, Schubert EK, Gralow JR, Specht JM, Ellis GK, Lawton TJ, Livingston RB, Petra PH, Link JM, Krohn KA, Mankoff DA. Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and Fulvestrant in patients with metastatic breast cancer. Clin Cancer Res. 2011;17(14):4799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: Indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19(11):2797–803.

    Article  CAS  PubMed  Google Scholar 

  52. Clark AS, DeMichele A, Mankoff D. HER2 imaging in the ZEPHIR study. Ann Oncol. 2016;27(4):555–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dijkers ECF, Kosterink JGW, Rademaker AP, Perk LR, van Dongen GAMS, Bart J, de Jong JR, de Vries EGE, Hooge MNL. Development and characterization of clinical-grade 89Zr-Trastuzumab for HER2/neu ImmunoPET imaging. J Nucl Med. 2009;50(6):974–81.

    Article  CAS  PubMed  Google Scholar 

  54. Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, Stroobants S, Huizing M, Aftimos P, Tol J, Oyen WJG, Vugts DJ, Hoekstra OS, Schröder CP, Menke-van der Houven van Oordt CW, Guiot T, Brouwers AH, Awada A, de Vries EGE, Flamen P. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27(4):619–24.

    Article  CAS  PubMed  Google Scholar 

  55. de Korte MA, de Vries EGE, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, Sluiter WJ, van Veldhuisen DJ, Suter TM, Sleijfer DT, Perik PJ. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.

    Article  PubMed  CAS  Google Scholar 

  56. Perik PJ, Lub-De Hooge MN, Gietema JA, Van Der Graaf WTA, De Korte MA, Jonkman S, Kosterink JGW, Van Veldhuisen DJ, Sleijfer DT, Jager PL, De Vries EGE. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24(15):2276–82.

    Article  CAS  PubMed  Google Scholar 

  57. Edmonds CE, Mankoff DA. Molecular pathology of breast cancer. In: Badve S, Gökmen-Polar Y, editors. Molecular pathology of breast cancer. Cham: Springer; 2016. p. 187–206.

    Chapter  Google Scholar 

  58. Chudgar AV, Mankoff DA. Molecular imaging and precision medicine in breast cancer. PET Clin. 2017;12(1):39–51.

    Article  PubMed  Google Scholar 

  59. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin N Am. 2005;43(1):153–67.

    Article  PubMed  Google Scholar 

  60. Kenny L. The use of novel PET tracers to image breast cancer biologic processes such as proliferation, DNA damage and repair, and angiogenesis. J Nucl Med. 2016;57(Suppl 1):89S–95S.

    Article  CAS  PubMed  Google Scholar 

  61. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34(9):1339–47.

    Article  PubMed  Google Scholar 

  62. Kostakoglu L, Duan F, Idowu MO, Jolles PR, Bear HD, Muzi M, Cormack J, Muzi JP, Pryma DA, Specht JM, Hovanessian-Larsen L, Miliziano J, Mallett S, Shields AF, Mankoff DA. A phase II study of 3’-deoxy-3′-18F-fluorothymidine PET in the assessment of early response of breast cancer to neoadjuvant chemotherapy: results from ACRIN 6688. J Nucl Med. 2015;56(11):1681–9.

    Article  CAS  PubMed  Google Scholar 

  63. Khiewvan B, Torigian DA, Emamzadehfard S, Paydary K, Salavati A, Houshmand S, Werner TJ, Alavi A. An update on the role of PET/CT and PET/MRI in ovarian cancer. Eur J Nucl Med Mol Imaging. 2017;44(6):1079–91.

    Article  CAS  PubMed  Google Scholar 

  64. Schorge JO, Modesitt SC, Coleman RL, Cohn DE, Kauff ND, Duska LR, Herzog TJ. SGO white paper on ovarian cancer: etiology, screening and surveillance. Gynecol Oncol. 2010;119(1):7–17.

    Article  PubMed  Google Scholar 

  65. Holcomb K, Vucetic Z, Miller MC, Knapp RC. Human epididymis protein 4 offers superior specificity in the differentiation of benign and malignant adnexal masses in premenopausal women. Am J Obstet Gynecol. 2011;205(4):358.e1–6.

    Article  CAS  Google Scholar 

  66. Outwater EK, Dunton CJ. Imaging of the ovary and adnexa: clinical issues and applications of MR imaging. Radiology. 1995;194(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  67. Grab D, Flock F, Stöhr I, Nüssle K, Rieber A, Fenchel S, Brambs H-J, Reske SN, Kreienberg R. Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol. 2000;77(3):454–9.

    Article  CAS  PubMed  Google Scholar 

  68. Mohaghegh P, Rockall AG. Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics. 2012;32(6):1751–73.

    Article  PubMed  Google Scholar 

  69. Kim S-K, Kang KW, Roh JW, Sim JS, Lee ES, Park S-Y. Incidental ovarian 18F-FDG accumulation on PET: correlation with the menstrual cycle. Eur J Nucl Med Mol Imaging. 2005;32(7):757–63.

    Article  CAS  PubMed  Google Scholar 

  70. Nishizawa S, Inubushi M, Ozawa F, Kido A, Okada H. Physiological FDG uptake in the ovaries after hysterectomy. Ann Nucl Med. 2007;21(6):345–8.

    Article  PubMed  Google Scholar 

  71. Yamamoto Y, Oguri H, Yamada R, Maeda N, Kohsaki S, Fukaya T. Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography. Int J Gynecol Obstet. 2008;102(2):124–7.

    Article  Google Scholar 

  72. Nam EJ, Yun MJ, Oh YT, Kim JW, Kim JH, Kim S, Jung YW, Kim SW, Kim YT. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol. 2010;116(3):389–94.

    Article  PubMed  Google Scholar 

  73. Tanizaki Y, Kobayashi A, Shiro M, Ota N, Takano R, Mabuchi Y, Yagi S, Minami S, Terada M, Ino K. Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int J Gynecol Cancer. 2014;24(3):454–60.

    Article  PubMed  Google Scholar 

  74. Karantanis D, Allen-Auerbach M, Czernin J. Relationship among glycolytic phenotype, grade, and histological subtype in ovarian carcinoma. Clin Nucl Med. 2012;37(1):49–53.

    Article  PubMed  Google Scholar 

  75. Benedet JL, Bender H, Jones H, Ngan HY, Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynecol Obstet. 2000;70(2):209–62.

    Article  CAS  Google Scholar 

  76. Castellucci P, Perrone AM, Picchio M, Ghi T, Farsad M, Nanni C, Messa C, Meriggiola MC, Pelusi G, Al-Nahhas A, Rubello D, Fazio F, Fanti S. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28(8):589–95.

    Article  CAS  PubMed  Google Scholar 

  77. De Iaco P, Musto A, Orazi L, Zamagni C, Rosati M, Allegri V, Cacciari N, Al-Nahhas A, Rubello D, Venturoli S, Fanti S. FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol. 2011;80(2):e98–e103.

    Article  PubMed  Google Scholar 

  78. Schwarz JK, Grigsby PW, Dehdashti F, Delbeke D. The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med. 2009;50(Suppl 1):64S–73S.

    Article  CAS  PubMed  Google Scholar 

  79. Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA, Werner M, Graeff H, Schwaiger M, Kuhn W. Prediction of response to neoadjuvant chemotherapy by sequential F-18-Fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol. 2005;23(30):7445–53.

    Article  PubMed  Google Scholar 

  80. Martoni A, Fanti S, Zamagni C, Rosati M, De Iaco P, D’Errico Grigioni A, et al. [18F]FDG-PET/CT monitoring early identifies advanced ovarian cancer patients who will benefit from prolonged neo-adjuvant chemotherapy. Nucl Med Mol Imaging. 2011;55:81–90.

    Google Scholar 

  81. Sironi S, Messa C, Mangili G, Zangheri B, Aletti G, Garavaglia E, Vigano R, Picchio M, Taccagni G, Del Maschio A, Fazio F. Integrated FDG PET/CT in patients with persistent ovarian cancer: correlation with histologic findings. Radiology. 2004;233(2):433–40.

    Article  PubMed  Google Scholar 

  82. Lee MC, Kim S, Chung J-K, Kang S-B, Kim M-H, Jeong JM, Lee DS. [18F]FDG PET as a substitute for second-look laparotomy in patients with advanced ovarian carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(2):196–201.

    Article  PubMed  Google Scholar 

  83. Antunovic L, Cimitan M, Borsatti E, Baresic T, Sorio R, Giorda G, Steffan A, Balestreri L, Tatta R, Pepe G, Rubello D, Cecchin D, Canzonieri V. Revisiting the clinical value of 18F-FDG PET/CT in detection of recurrent epithelial ovarian carcinomas: correlation with histology, serum CA-125 assay, and conventional radiological modalities. Clin Nucl Med. 2012;37(8):184–8.

    Article  PubMed  Google Scholar 

  84. Bristow RE, Giuntoli RL, Pannu HK, Schulick RD, Fishman EK, Wahl RL. Combined PET/CT for detecting recurrent ovarian cancer limited to retroperitoneal lymph nodes. Gynecol Oncol. 2005;99(2):294–300.

    Article  PubMed  Google Scholar 

  85. Fulham MJ, Carter J, Baldey A, Hicks RJ, Ramshaw JE, Gibson M. The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET data collection project. Gynecol Oncol. 2009;112(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lapela M, Leskinen-Kallio S, Varpula M, Grénman S, Salmi T, Alanen K, Någren K, Lehikoinen P, Ruotsalainen U, Teräs M. Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med. 1995;36(12):2196–200.

    CAS  PubMed  Google Scholar 

  87. Munk Jensen M, Erichsen K, Bjorkling F, Madsen J, Buhl Jensen P, Sehested M, Hojgaard L, Kjær A. Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One. 2013;8(12):e85126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. van der Bilt ARM, van Scheltinga AGTT, Timmer-Bosscha H, Schröder CP, Pot L, Kosterink JGW, van der Zee AGJ, Hooge MNL, de Jong S, de Vries EGE, Reyners AKL. Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of Everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res. 2012;18(22):6306–14.

    Article  PubMed  CAS  Google Scholar 

  89. Nead KT, Sharp SJ, Thompson DJ, Painter JN, Savage DB, Semple RK, Barker A, Australian National Endometrial Cancer Study Group, Perry JRB, Attia J, Dunning AM, Easton DF, Holliday E, Lotta LA, O’Mara T, McEvoy M, Pharoah PDP, Scott RJ, Spurdle AB, Langenberg C, Wareham NJ, Scott RA. Evidence of a causal association between insulinemia and endometrial cancer: a mendelian randomization analysis. J Natl Cancer Inst. 2015;107(9):djv178.

    Google Scholar 

  90. Ziel HK, Finkle WD. Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med. 1975;293(23):1167–70.

    Article  CAS  PubMed  Google Scholar 

  91. Peungjesada S, Bhosale PR, Balachandran A, Iyer RB. Magnetic resonance imaging of endometrial carcinoma. J Comp Assist Tomogr. 2009;33(4):601.

    Article  Google Scholar 

  92. Barwick TD, Rockall AG, Barton DP, Sohaib SA. Imaging of endometrial adenocarcinoma. Clin Radiol. 2006;61(7):545–55.

    Article  CAS  PubMed  Google Scholar 

  93. Petru E, Lück H-J, Stuart G, Gaffney D, Millan D, Vergote I. Gynecologic cancer intergroup (GCIG) proposals for changes of the current FIGO staging system. Eur J Obstet Gynecol Reprod Biol. 2009;143(2):69–74.

    Article  PubMed  Google Scholar 

  94. Mariani A, Webb MJ, Keeney GL, Podratz KC. Routes of lymphatic spread: a study of 112 consecutive patients with endometrial cancer. Gynecol Oncol. 2001;81(1):100–4.

    Article  CAS  PubMed  Google Scholar 

  95. Picchio M, Mangili G, Gajate AMS, De Marzi P, Spinapolice EG, Mapelli P, Giovacchini G, Sigismondi C, Viganò R, Sironi S, Messa C. High-grade endometrial cancer: value of [18F]FDG PET/CT in preoperative staging. Nucl Med Commun. 2010;31(6):506–12.

    Google Scholar 

  96. Kitajima K, Murakami K, Yamasaki E, Fukasawa I, Inaba N, Kaji Y, Sugimura K. Accuracy of 18F-FDG PET/CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. Am J Roentgenol. 2008;190(6):1652–8.

    Article  Google Scholar 

  97. Suzuki R, Miyagi E, Takahashi N, Sukegawa A, Suzuki A, Koike I, Sugiura K, Okamoto N, Inoe T, Hirahara F. Validity of positron emission tomography using fluoro-2-deoxyglucose for the preoperative evaluation of endometrial cancer. Int J Gynecol Cancer. 2007;17(4):890–6.

    Article  CAS  PubMed  Google Scholar 

  98. Belhocine T, De Barsy C, Hustinx R, Willems-Foidart J. Usefulness of 18F-FDG PET in the post-therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging. 2002;29(9):1132–9.

    Article  CAS  PubMed  Google Scholar 

  99. Chung HH, Kang WJ, Kim JW, Park N-H, Song Y-S, Chung J-K, Kang S-B. The clinical impact of [18F]FDG PET/CT for the management of recurrent endometrial cancer: correlation with clinical and histological findings. Eur J Nucl Med Mol Imaging. 2008;35(6):1081–8.

    Article  PubMed  Google Scholar 

  100. Tsujikawa T, Yoshida Y, Kudo T, Kiyono Y, Kurokawa T, Kobayashi M, Tsuchida T, Fujibayashi Y, Kotsuji F, Okazawa H. Functional images reflect aggressiveness of endometrial carcinoma: estrogen receptor expression combined with 18F-FDG PET. J Nucl Med. 2009;50(10):1598–604.

    Article  CAS  PubMed  Google Scholar 

  101. Sawaya GF, Huchko MJ. Cervical Cancer screening. Med Clin N Am. 2017;101(4):743–53.

    Article  PubMed  Google Scholar 

  102. American Cancer Society. Cancer facts and figures 2016. Atlanta, GA: American Cancer Society; 2016.

    Google Scholar 

  103. Wildenberg JC, Yam BL, Langer JE, Jones LP. US of the nongravid cervix with multimodality imaging correlation: normal appearance, pathologic conditions, and diagnostic pitfalls. Radiographics. 2016;36(2):596–617.

    Article  PubMed  Google Scholar 

  104. Kidd EA, Spencer CR, Huettner PC, Siegel BA, Dehdashti F, Rader JS, Grigsby PW. Cervical cancer histology and tumor differentiation affect 18F-fluorodeoxyglucose uptake. Cancer. 2009;115(15):3548–54.

    Article  PubMed  Google Scholar 

  105. Rauch GM, Kaur H, Choi H, Ernst RD, Klopp AH, Boonsirikamchai P, Westin SN, Marcal LP. Optimization of MR imaging for pretreatment evaluation of patients with endometrial and cervical cancer. Radiographics. 2014;34(4):1082–98.

    Article  PubMed  Google Scholar 

  106. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, Ihling C, Högerle S, Mix M, Moser E, Krause TM. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology. 2001;218(3):776–82.

    Article  CAS  PubMed  Google Scholar 

  107. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19(17):3745–9.

    Article  CAS  PubMed  Google Scholar 

  108. Sironi S, Buda A, Picchio M, Perego P, Moreni R, Pellegrino A, Colombo M, Mangioni C, Messa C, Fazio F. Lymph node metastasis in patients with clinical early-stage cervical Cancer: detection with integrated FDG PET/CT. Radiology. 2006;238(1):272–9.

    Article  PubMed  Google Scholar 

  109. Wright JD, Dehdashti F, Herzog TJ, Mutch DG, Huettner PC, Rader JS, Gibb RK, Powell MA, Gao F, Siegel BA, Grigsby PW. Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer. 2005;104(11):2484–91.

    Article  PubMed  Google Scholar 

  110. Lee Y-Y, Choi CH, Kim CJ, Kang H, Kim T-J, Lee J-W, Lee J-H, Bae D-S, Kim B-G. The prognostic significance of the SUVmax (maximum standardized uptake value) for F-18 fluorodeoxyglucose of the cervical tumor in PET imaging for early cervical cancer: preliminary results. Gynecol Oncol. 2009;115(1):65–8.

    Article  PubMed  Google Scholar 

  111. Singh AK, Grigsby PW, Dehdashti F, Herzog TJ, Siegel BA. FDG-PET lymph node staging and survival of patients with FIGO stage IIIb cervical carcinoma. Int J Rad Oncol Biol Phys. 2003;56(2):489–93.

    Article  Google Scholar 

  112. Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA. 2007;298(19):2289–95.

    Article  CAS  PubMed  Google Scholar 

  113. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F]fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22(11):2167–71.

    Article  PubMed  Google Scholar 

  114. Havrilesky LJ, Wong TZ, Secord AA, Berchuck A, Clarke-Pearson DL, Jones EL. The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol. 2003;90(1):186–90.

    Article  PubMed  Google Scholar 

  115. Brooks RA, Rader JS, Dehdashti F, Mutch DG, Powell MA, Thaker PH, Siegel BA, Grigsby PW. Surveillance FDG-PET detection of asymptomatic recurrences in patients with cervical cancer. Gynecol Oncol. 2009;112(1):104–9.

    Article  PubMed  Google Scholar 

  116. Mittra E, El-Maghraby T, Rodriguez CA, Quon A, McDougall IR, Gambhir SS, Iagaru A. Efficacy of 18F-FDG PET/CT in the evaluation of patients with recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(12):1952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ryu S-Y, Kim M-H, Choi S-C, Choi C-W, Lee K-H. Detection of early recurrence with 18F-FDG PET in patients with cervical cancer. J Nucl Med. 2003;44(3):347–52.

    Google Scholar 

  118. Grigsby PW, Malyapa RS, Higashikubo R, Schwarz JK, Welch MJ, Huettner PC, Dehdashti F. Comparison of molecular markers of hypoxia and imaging with 60Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol. 2007;9(5):278–83.

    Article  PubMed  Google Scholar 

  119. Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-Bis(N4-methylthiosemicarbazone). J Nucl Med. 2008;49(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  120. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49(7):1177–82.

    Article  PubMed  Google Scholar 

  121. Beiderwellen K, Grueneisen J, Ruhlmann V, Buderath P, Aktas B, Heusch P, Kraff O, Forsting M, Lauenstein TC, Umutlu L. [18F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging. 2015;42(1):56–65.

    Article  PubMed  CAS  Google Scholar 

  122. Lee SI, Catalano OA, Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med. 2015;56(3):436–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina E. Korhonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korhonen, K.E., Pantel, A.R., Mankoff, D.A. (2020). 18F-FDG-PET/CT in Breast and Gynecologic Cancer. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics