Skip to main content

Radiopharmaceutical Sciences

  • Chapter
  • First Online:

Abstract

Radiopharmaceutical sciences summarizes all scientific aspects comprising chemistry, physics, and biology/pharmacology that deal with incorporating a suitable radionuclide into a pharmaceutical or other biologically active molecule or molecular entity. The resulting radiopharmaceuticals are used in nuclear medicine applications both for diagnosis [meaning noninvasive scintigraphic imaging] and for internal radiotherapy [1]. Internal radiotherapy is nowadays called radioligand therapy (RLT) or endoradiotherapy and altogether, i.e., noninvasive scintigraphic imaging and therapy, is summarized under the term radiothera(g)nostics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Nuclear reaction cross section: 1 barn (b) = 10−28 m2.

  2. 2.

    Transient equilibrium: Physical half-life of parent radionuclide T1 is longer than daughter T2 (T1 > T2).

  3. 3.

    Secular equilibrium: Physical half-life of parent radionuclide T1 is much longer than daughter T2 (T1 ≫ T2).

References

  1. Stöcklin G, Qaim SM, Rösch F. The impact of radioactivity on medicine. Radiochim Acta. 1995;70-1:249–72.

    Google Scholar 

  2. Qaim SM. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol. 2017;44:31–49.

    Article  CAS  PubMed  Google Scholar 

  3. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108:1501–16.

    Article  CAS  PubMed  Google Scholar 

  4. Krasikova R. PET radiochemistry automation: state of the art and future trends in 18F-nucleophilic fluorination. Curr Org Chem. 2013;17:2097–107.

    Article  CAS  Google Scholar 

  5. Honer M, Gobbi L, Martarello L, Comley RA. Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov Today. 2014;19:1936–44.

    Article  CAS  PubMed  Google Scholar 

  6. Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, Jeong JM, Mach RH, Mindt TL, Pike VW, Windhorst AD. Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight. Nucl Med Biol. 2017;55:v–xi.

    Article  CAS  PubMed  Google Scholar 

  7. de Goeij JJM, Bonardi ML. How do we define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added? J Radioanal Nucl Chem. 2005;263:13–8.

    Article  Google Scholar 

  8. Ermert J. Labelling with positron emitters of pnicogens and chalcogens. J Label Compd Radiopharm. 2018;61:179–95.

    Article  CAS  Google Scholar 

  9. Piel M, Vernaleken I, Rösch F. Positron emission tomography in CNS drug discovery and drug monitoring. J Med Chem. 2014;57:9232–58.

    Article  CAS  PubMed  Google Scholar 

  10. Brust P, van den Hoff J, Steinbach J. Development of 18F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull. 2014;30:777–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberkorn U, Mier W, Kopka K, Herold-Mende C, Altmann A, Babich J. Identification of ligands and translation to clinical applications. J Nucl Med. 2017;58:27S–33S.

    Article  CAS  PubMed  Google Scholar 

  12. Martić-Kehl MI, Schibli R, Schubiger PA. Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging. 2012;39:1492–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rutherford E. LIV. Collision of α particles with light atoms. IV. An anomalous effect in nitrogen. J Sci. 1919;37:581–7.

    CAS  Google Scholar 

  14. Curie I, Joliot F. Un nouveau type de radioactivité. Comptes Rendus. 1934;198:254–6.

    CAS  Google Scholar 

  15. IAEA. Research reactors: purposes and future. Technical reports series no. 470. Vienna: International Atomic Energy Agency; 2016.

    Google Scholar 

  16. Goethals P, Zimmermann R. A report on cyclotron used in nuclear medicine: world market report & directory. Ottignies-Louvain-la-Neuve: MEDraysintell; 2015.

    Google Scholar 

  17. Habs D, Köster U. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl Phys B. 2011;103:501–19.

    Article  CAS  Google Scholar 

  18. Failla G (1923) System for radium emanation. Patent

    Google Scholar 

  19. Stang LGJ, Tucker WD, Doering RF, Weiss AJ, Greene MW, Banks HOJ (1957) Development of methods for the production of certain short-lived radionuclides. In: Proceedings of the First UNESCO conference, 1957, Paris

    Google Scholar 

  20. Dash A, Chakravarty R. Pivotal role of separation chemistry in the development of radionuclide enerators to meet clinical demands. RCS Adv. 2014;4:42779–803.

    CAS  Google Scholar 

  21. Hendee WR, Bednarek DR. The concepts of transient and secular equilibrium are incorrectly described in most textbooks, and incorrectly taught to most physics students and residents. Med Phys. 2004;31:1313–5.

    Article  PubMed  Google Scholar 

  22. Rösch F, Knapp FFR. Radionuclide generators. In: Vertes A, et al., editors. Handbook of nuclear chemistry. Dordrecht: Springer; 2011.

    Google Scholar 

  23. Leichner PK. Radiation dosimetry of monoclonal antibodies: practical considerations. In: Henkin RE, et al., editors. Nuclear medicine. St. Louis, MO: Mosby; 1996. p. 558–62.

    Google Scholar 

  24. Yang S, Kim K, Zaman M, Naik H, Kim G, Song T-Y, Lee Y-O, Shin SG, Key Y-U, Cho M-H. Isomeric yield ratios for the natNd(γ, xn)1391m,g;141m,gNd reactions in the bremsstrahlung energy region from 45 to 60 MeV. J Radioanal Nucl Chem. 2014;300:367–77.

    Article  CAS  Google Scholar 

  25. IAEA. Handbook on photonuclear data for applications cross-sections and spectra final report of a co-ordinated research project 1996–1999. IAEA TECDOC series, vol. 1178. Vienna: International Atomic Energy Agency; 2000.

    Google Scholar 

  26. Al-Abyad M, Spahn I, Sudár S, Morsy M, Comsan MNH, Csikai J, Qaim SM, Coenen HH. Nuclear data for production of the therapeutic radionuclides 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm via the (n,p) reaction: evaluation of excitation function and its validation via integral cross-section measurement using a 14MeV d(Be) neutron source. Appl Radiat Isot. 2006;64:717–24.

    Article  CAS  PubMed  Google Scholar 

  27. Spahn I, Coenen HH, Qaim SM. Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim Acta. 2004;92:183–6.

    Article  CAS  Google Scholar 

  28. DeLorme K, Engle J, Kowash B, Nortier F, Birnbaum E, McHale S, Clinton J, John K, Jackman K, Marus L. Production potential of Sc-47 using spallation neutrons at the Los Alamos isotope production facility. J Nucl Med. 2014;55:196.

    Google Scholar 

  29. Bauer GS. Physics and technology of spallation neutron sources. Nucl Instrum Methods Phys Res, Sect A. 2001;463:505–43.

    Article  CAS  Google Scholar 

  30. Baum RP, Singh A, Benešová M, Vermeulen C, Gnesin S, Koster U, Johnston K, Muller D, Senftleben S, Kulkarni HR, Turler A, Schibli R, Prior JO, van der Meulen NP, Muller C. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC. Dalton Trans. 2017;46:14638–46.

    Article  CAS  PubMed  Google Scholar 

  31. Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt NT, Türler A, Schibli R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.

    Article  PubMed  CAS  Google Scholar 

  32. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med. 1993;34:2222–6.

    CAS  PubMed  Google Scholar 

  33. Rösch F, Herzog H, Qaim S. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals. 2017;10:56.

    Article  PubMed Central  CAS  Google Scholar 

  34. Townsend DW, Beyer T, Kinahan P, Meltzer CC, Brun T, Nutt R. The SMART scanner: a combined PET/CT tomograph for clinical oncology. Radiology. 1998;209P:169–70.

    Google Scholar 

  35. Bailey DL, Barthel H, Beuthin-Baumann B, Beyer T, Bisdas S, Boellaard R, Czernin J, Drzezga A, Ernemann U, Franzius C, Guckel B, Handgretinger R, Hartenbach M, Hellwig D, Nadel H, Nekolla SG, Pfluger T, Pichler BJ, Quick HH, Sabri O, Sattler B, Schafer J, Schick F, Siegel BA, Schlemmer HP, Schwenzer NF, van den Hoff J, Veit-Haibach P, Wehrl HF. Combined PET/MR: where are we now? Summary report of the second international workshop on PET/MR imaging, 8-12 Apr 2013, Tubingen, Germany. Mol Imaging Biol. 2014;16:295–310.

    PubMed  Google Scholar 

  36. Schmand M, Burbar Z, Corbeil J, Zhang N, Michael C, Byars L, Eriksson L, Grazioso R, Martin M, Moor A, Camp J, Matschl V, Ladebeck R, Renz W, Fischer H, Jattke K, Schnur G, Rietsch N, Bendriem B, Heiss W-D. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med. 2007;48:45P.

    Google Scholar 

  37. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiani A, Esquevin A, Lepareur N, Bourguet P, Le Jeune F, Gauvrit JY. Main applications of hybrid PET-MRI contrast agents: a review. Contrast Media Mol Imaging. 2016;11:92–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ermert J. 18F-labelled intermediates for radiosynthesis by modular build-up reactions: newer developments. Biomed Res Int. 2014;2014:812973.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl. 2008;47:8998–9033.

    Article  CAS  PubMed  Google Scholar 

  41. Qaim SM, Clark JC, Crouzel C, Guillaume M, Helmeke HJ, Nebeling B, Pike VW, Stöcklin G. PET radionuclide production. In: Stöcklin G, Pike VW, editors. Radiopharmaceuticals for positron emission tomography – methodological aspects. Dordrecht: Kluwer; 1993. p. 1–42.

    Google Scholar 

  42. Urch DS. Radiochemistry. Annu Rep A. 2013;109:468–83.

    CAS  Google Scholar 

  43. IAEA. Nuclear data for the production of therapeutic radionuclides. Technical reports series. International Atomic Energy Agency: Vienna; 2011.

    Google Scholar 

  44. Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F. Handbook of nuclear chemistry. Dordrecht: Kluwer; 2003.

    Google Scholar 

  45. Landais P, Crouzel C. A new synthesis of carbon-11 labelled phosgene. Appl Radiat Isot. 1987;38:297–300.

    Article  CAS  Google Scholar 

  46. Crouzel C, Långström B, Pike VW, Coenen HH. Recommendations for a practical production of [11C]methyl iodide. Appl Radiat Isot. 1987;38:601–3.

    Article  CAS  Google Scholar 

  47. Suzuki K, Yamazaki T, Sasaki M, Kubodera A. Specific activity of [11C]CO2generated in a N2 gas target: effect of irradiation dose, irradiation history, oxygen content and beam energy. Radiochim Acta. 2000;88:211–5.

    Article  CAS  Google Scholar 

  48. Clark JC, Crouzel C, Meyer GJ, Strijckmans K. Current methodology for oxygen-15 production for clinical use. Int J Appl Radiat Isot. 1987;38:597–600.

    Article  CAS  Google Scholar 

  49. Powell J, O’Neil JP. Production of [15O]water at low-energy proton cyclotrons. Appl Radiat Isot. 2006;64:755–9.

    Article  CAS  PubMed  Google Scholar 

  50. Gómez-Vallejo V, Gaja V, Gona KB, Llop J. Nitrogen-13: historical review and future perspectives. J Label Compd Radiopharm. 2014;57:244–54.

    Article  CAS  Google Scholar 

  51. Schlyer DJ. Production of radionuclides in accelerators. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. New York, NY: John Wiley & Sons; 2003. p. 1–70.

    Google Scholar 

  52. Bishop A, Satyamurthy N, Bida G, Phelps M, Barrio JR. Identification and quantitation of gaseous compounds of fluorine generated in [18F]F2 target systems. Nucl Med Biol. 1996;23:391–405.

    Article  CAS  PubMed  Google Scholar 

  53. Hess E, Blessing G, Coenen HH, Qaim SM. Improved target system for production of high purity [18F]fluorine via the 18O(p,n)18F reaction. Appl Radiat Isot. 2000;52:1431–40.

    Article  CAS  PubMed  Google Scholar 

  54. Roberts AD, Oakes TR, Nickles RJ. Development of an improved target for [18F]F2 production. Appl Radiat Isot. 1995;46:87–91.

    Article  CAS  PubMed  Google Scholar 

  55. Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol. 1997;24:677–83.

    Article  CAS  PubMed  Google Scholar 

  56. Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, Kreppel B, Kopka K, Essler M, Rosch F. Clinical translation and first in-human use of [44Sc]Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics. 2017;7:4359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hernandez R, Valdovinos HF, Yang Y, Chakravarty R, Hong H, Barnhart TE, Cai W. 44Sc: an attractive isotope for peptide-based PET imaging. Mol Pharm. 2014;11:2954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khawar A, Eppard E, Sinnes JP, Roesch F, Ahmadzadehfar H, Kurpig S, Meisenheimer M, Gaertner FC, Essler M, Bundschuh RA. 44Sc Sc-PSMA-617 biodistribution and dosimetry in patients with metastatic castration-resistant prostate carcinoma. Clin Nucl Med. 2018;43:323–30.

    Article  PubMed  Google Scholar 

  59. Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, Negri R, Masciocchi N, Maiocchi A, Uggeri F, Tóth I, Aime S, Giovenzana GB, Baranyai Z. AAZTA: an ideal chelating agent for the development of 44Sc PET imaging agents. Angew Chem. 2017;129:2150–4.

    Article  Google Scholar 

  60. Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, Scampoli P, Türler A, van der Meulen N. Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Appl Radiat Isot. 2017;129:96–102.

    Article  CAS  PubMed  Google Scholar 

  61. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin Y-J, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med. 1997;38:378–88.

    Article  CAS  PubMed  Google Scholar 

  63. Topping GJ, Schaffer P, Hoehr C, Ruth TJ, Sossi V. Manganese-52 positron emission tomography tracer characterization and initial results in phantoms and in vivo. Med Phys. 2013;40:042502.

    Article  PubMed  CAS  Google Scholar 

  64. Abe K, Iizuka A, Hasegawa A, Morozumi S. Induced radioactivity of component materials by 16-MeV protons and 30-MeV alpha particles. J Nucl Mater. 1984;123:972–6.

    Article  CAS  Google Scholar 

  65. Dmitriev PP. Systematics of nuclear reaction yields for thick target at 22 mev proton energy. Vop At Nauki i Tekhn SerYadernye Konstanty. 1983;2:57.

    Google Scholar 

  66. Aslam MN, Qaim SM. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl Radiat Isot. 2014;89:65–73.

    Article  CAS  PubMed  Google Scholar 

  67. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM. Charged particle induced reaction cross section data for production of the emerging medically important positron emitter 64Cu: a comprehensive evaluation. Radiochim Acta. 2009;97:669–86.

    Article  CAS  Google Scholar 

  68. Szelecsényi F, Blessing G, Qaim SM. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot. 1993;44:575–80.

    Article  Google Scholar 

  69. Watanabe S, Iida Y, Suzui N, Katabuchi T, Ishii S, Kawachi N, Hanaoka H, Watanabe S, Matsuhashi S, Endo K, Ishioka NS. Production of no-carrier-added 64Cu and applications to molecular imaging by PET and PETIS as a biomedical tracer. J Radioanal Nucl Chem. 2009;280:199–205.

    Article  CAS  Google Scholar 

  70. Szelecsényi F, Boothe TE, Takács S, Tárkányi F, Tavano E. Evaluated cross section and thick target yield data bases of Zn+p processes for practical applications. Appl Radiat Isot. 1998;49:1005–32.

    Article  Google Scholar 

  71. EXFOR (2018) Experimental nuclear reaction data (EXFOR). https://www-nds.iaea.org/exfor/exfor.htm. Accessed 2018.

  72. Takács S, Ditrói F, Szűcs Z, Haba H, Komori Y, Aikawa M, Saito M. Crosschecking of alpha particle monitor reactions up to 50 MeV. Nucl Instrum Methods Phys Res, Sect B. 2017;397:33–8.

    Article  CAS  Google Scholar 

  73. Tárkányi F, Takács S, Ditrói F, Hermanne A, Sonck M, Shubin Y. Excitation functions of deuteron induced nuclear reactions on natural zinc up to 50 MeV. Nucl Instrum Methods Phys Res, Sect B. 2004;217:531–50.

    Article  CAS  Google Scholar 

  74. Khandaker MU, Haba H, Murakami M, Otuka N. Production cross-sections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV. Nucl Instrum Methods Phys Res, Sect B. 2015;346:8–16.

    Article  CAS  Google Scholar 

  75. Isabel M, Prata M. Gallium-68: a new trend in PET radiopharmacy. Curr Radiopharm. 2012;5:142–9.

    Article  Google Scholar 

  76. Lambrecht RM, Sajjad M. Accelerator-derived radionuclide generators. Radiochim Acta. 1988;43:171–9.

    Article  CAS  Google Scholar 

  77. Loc’h C, Mazièré B, Comar D. A new generator for ionic gallium-68. J Nucl Med. 1980;21:171–3.

    PubMed  Google Scholar 

  78. Nakayama M, Haratake M, Koiso T, Ishibashi O, Harada K, Nakayama H, Sugii A, Yahara S, Arano Y. Separation of 68Ga from 68Ge using a macroporous organic polymer containing N-methylglucamine groups. Anal Chim Acta. 2002;453:135–41.

    Article  CAS  Google Scholar 

  79. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, Jahn M, Jennewein M, Rosch F. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8.

    Article  CAS  PubMed  Google Scholar 

  80. Takács S, Tárkányi F, Hermanne A, Paviotti de Corcuera R. Validation and upgrading of the recommended cross section data of charged particle reactions used for production of PET radioisotopes. Nucl Instrum Methods Phys Res, Sect B. 2003;211:169–89.

    Article  CAS  Google Scholar 

  81. Basile D, Birattari C, Bonardi M, Goetz L, Sabbioni E, Salomone A. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes. Int J Appl Radiat Isot. 1981;32:403–10.

    Article  CAS  PubMed  Google Scholar 

  82. Evans CD, LaDow K, Schumann BL, Savage RE, Caruso J, Vonderheide A, Succop P, Talaska G. Effect of arsenic on benzo a pyrene DNA adduct levels in mouse skin and lung. Carcinogenesis. 2004;25:493–7.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Z-Y. Arsenic compounds as anticancer agents. Cancer Chemother Pharmacol. 2001;48:S72–6.

    Article  CAS  PubMed  Google Scholar 

  84. Jennewein M, Qaim SM, Kulkarni RV, Mason RP, Hermanne A, Rosch F. A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim Acta. 2005;93:579–83.

    Article  CAS  Google Scholar 

  85. Horiguchi T, Kumahora H, Inoue H, Yoshizawa Y. Excitation function of Ge(p,xnyp) reactions and production of 68Ge. Int J Appl Radiat Isot. 1983;34:1531–5.

    Article  CAS  Google Scholar 

  86. Spahn I, Steyn GF, Nortier FM, Coenen HH, Qaim SM. Excitation functions of natGe(p,xn)71,72,73,74As reactions up to 100MeV with a focus on the production of 72As for medical and 73As for environmental studies. Appl Radiat Isot. 2007;65:1057–64.

    Article  CAS  PubMed  Google Scholar 

  87. Takács S, Takács MP, Hermanne A, Tárkányi F, Adam-Rebeles R. Excitation functions of longer lived radionuclides formed by deuteron irradiation of germanium. Nucl Instrum Methods Phys Res, Sect B. 2014;336:81–95.

    Article  CAS  Google Scholar 

  88. Didik VA, Malkovich RS, Skoryatina EA, Kozlovskii VV. Experimental determination of the cross sections of nuclear reactions by the method of analysis of the concentration profiles of transmutation nuclides. At Energy. 1994;77:570–2.

    Article  Google Scholar 

  89. Takács S, Takács MP, Ditrói F, Aikawa M, Haba H, Komori Y. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation. Nucl Instrum Methods Phys Res, Sect B. 2016;383:213–26.

    Article  CAS  Google Scholar 

  90. Shehata MM, Scholten B, Spahn I, Coenen HH, Qaim SM. Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J Radioanal Nucl Chem. 2011;287:435–42.

    Article  CAS  Google Scholar 

  91. Mushtaq A, Qaim SM, Stöcklin G. Production of 73Se via (p,3n) and (d,4n) reactions on arsenic. Int J Appl Radiat Isot. 1988;39:1085–91.

    Article  CAS  Google Scholar 

  92. Faßbender M, de Villiers D, Nortier M, van der Walt N. The natBr(p,x)73,75Se nuclear processes: a convenient route for the production of radioselenium tracers relevant to amino acid labelling. Appl Radiat Isot. 2001;54:905–13.

    Article  PubMed  Google Scholar 

  93. Mushtaq A, Qaim SM. Excitation functions of α- and 3He-particle induced nuclear reactions on natural germanium: evaluation of production routes for 73Se. Radiochim Acta. 1990;50:27–31.

    Article  CAS  Google Scholar 

  94. Blessing G, Lavi N, Qaim SM. Production of 73Se via the 70Ge(α, n)-process using high current target materials. Int J Appl Radiat Isot. 1992;43:455–61.

    Article  CAS  Google Scholar 

  95. Qaim SM, Spahn I, Scholten B, Neumaier B. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim Acta. 2016;104:601–24.

    Article  CAS  Google Scholar 

  96. Qaim SM, Spahn I. Development of novel radionuclides for medical applications. J Label Compd Radiopharm. 2018;61:126–40.

    Article  CAS  Google Scholar 

  97. Qaim SM, Blessing G, Tárkányi F, Lavi N, Bräutigam W, Scholten B, Stöcklin B. Production of longer-lived positron emitters 73Se, 82mRb and 124I. In: 14th international conference on cyclotrons and their applications (CYCLOTRONS 95), 1995. Cape Town: Faure; 1995.

    Google Scholar 

  98. Qaim SM, Bisinger T, Hilgers K, Nayak D, Coenen HH. Positron emission intensities in the decay of 64Cu-, 76Br and 124I. Radiochim Acta. 2007;95:67–73.

    CAS  Google Scholar 

  99. Ribeiro MJ, Almeida P, Strul D, Ferreira N, Loc’h C, Brulon V, Trebossen R, Maziere B, Bendriem B. Comparison of fluorine-18 and bromine-76 imaging in positron emission tomography. Eur J Nucl Med. 1999;26:758–66.

    Article  CAS  PubMed  Google Scholar 

  100. Rowland DJ, McCarthy TJ, Welch MJ. Radiobromine for imaging and therapy. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. New York, NY: John Wiley & Sons; 2003. p. 441–65.

    Google Scholar 

  101. Qaim SM. Recent developments in the production of 18F, 75,76,77Br and 123I. Appl Radiat Isot. 1986;37:803–10.

    Article  CAS  Google Scholar 

  102. Spahn I, Steyn GF, Vermeulen C, Kovács Z, Szelecsényi F, Shehata MM, Spellerberg S, Scholten B, Coenen HH, Qaim SM. New cross section measurements for the production of the Auger electron emitters 77Br and 80mBr. Radiochim Acta. 2010;98:749–55.

    Article  CAS  Google Scholar 

  103. Scholten B, Takács S, Tárkányi F, Coenen Heinz H, Qaim Syed M. Excitation functions of deuteron induced nuclear reactions on enriched 78Kr with particular relevance to the production of 76Br. Radiochim Acta. 2004;92(4–6):203–7.

    CAS  Google Scholar 

  104. Hassan HE, Qaim SM, Shubin Y, Azzam A, Morsy M, Coenen HH. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl Radiat Isot. 2004;60:899–909.

    Article  CAS  PubMed  Google Scholar 

  105. Breunig K, Spahn I, Spellerberg S, Coenen HH. Production of no-carrier-added radiobromine: new nickel selenide target and optimized separation by dry distillation. Radiochim Acta. 2015;103:397–402.

    Article  CAS  Google Scholar 

  106. Hagemann CE, Ghotbi AA, Kjær A, Hasbak P. Quantitative myocardial blood flow with Rubidium-82 PET: a clinical perspective. Am J Nucl Med Mol Imaging. 2015;5:457–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chatal J-F, Rouzet F, Haddad F, Bourdeau C, Mathieu C, Le Guludec D. Story of rubidium-82 and advantages for myocardial perfusion PET imaging. Front Med. 2015;2:65.

    Article  Google Scholar 

  108. Phillips DR, Peterson EJ, Taylor WA, Jamriska DJ, Hamilton VT, Kitten JJ, Valdez FO, Salazar LL, Pitt LR, Heaton RC, Kolsky KL, Mausner LF, Kurczak S, Zhuikov BL, Kokhanyuk VM, Konyakhin NA, Nortier FM, van der Walt TN, Hanekom J, Sosnowski KM, Carty JS. Production of strontium-82 for the Cardiogen® PET generator: a project of the Department of Energy Virtual Isotope Center. Radiochim Acta. 2000;88:149–55.

    Article  CAS  Google Scholar 

  109. Tárkányi F, Qaim SM, Stöcklin G. Excitation functions of high-energy 3He and α-particle induced nuclear reactions on natural krypton with special reference to the production of 82Sr. Appl Radiat Isot. 1990;41:91–5.

    Article  Google Scholar 

  110. Zaneb H, Hussain M, Amjed N, Qaim SM. Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y. Appl Radiat Isot. 2015;104:232–41.

    Article  CAS  PubMed  Google Scholar 

  111. Rösch F, Qaim SM, Stöcklin G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-processes. Radiochim Acta. 1993;61:1–8.

    Article  Google Scholar 

  112. Kettern K, Linse KH, Spellerberg S, Coenen HH, Qaim SM. Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim Acta. 2002;90:845–9.

    Article  CAS  Google Scholar 

  113. Rösch F, Qaim SM, Stöcklin G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot. 1993;44:677–81.

    Article  Google Scholar 

  114. Oehlke E, Hoehr C, Hou X, Hanemaayer V, Zeisler S, Adam MJ, Ruth TJ, Celler A, Buckley K, Benard F, Schaffer P. Production of Y-86 and other radiometals for research purposes using a solution target system. Nucl Med Biol. 2015;42:842–9.

    Article  CAS  PubMed  Google Scholar 

  115. Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Design Dev Ther. 2016;10:465–81.

    Article  CAS  Google Scholar 

  116. Fischer G, Seibold U, Schirrmacher R, Wängler B, Wängler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules. 2013;18:6469–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Meijs WE, Herscheid JDM, Haisma HJ, Wijbrandts R, van Langevelde F, Van Leuffen PJ, Mooy R, Pinedo HM. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl Radiat Isot. 1994;45:1143–7.

    Article  CAS  Google Scholar 

  118. McKnight BN, Viola-Villegas NT. 89Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Label Compd Radiopharm. 2018; https://doi.org/10.1002/jlcr.3605.

    Article  CAS  PubMed  Google Scholar 

  119. Severin GW, Engle JW, Barnhart TE, Nickles RJ. 89Zr radiochemistry for positron emission tomography. Med Chem. 2011;7:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Omara HM, Hassan KF, Kandil SA, Hegazy FE, Saleh ZA. Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr. Radiochim Acta. 2009;97:467–71.

    Article  CAS  Google Scholar 

  121. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. BioMed Res Int. 2015;2015:481279.

    PubMed  PubMed Central  Google Scholar 

  122. Minarik D, Sjogreen-Gleisner K, Linden O, Wingardh K, Tennvall J, Strand SE, Ljungberg M. 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51:1974–8.

    Article  PubMed  Google Scholar 

  123. Elschot M, Nijsen JFW, Dam AJ, de Jong H. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One. 2011;6:e26174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. IAEA. Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators. Technical reports series. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  125. Delaunay-Olkowsky J, Strohal P, Cindro N. Total reaction cross sections of photon induced reactions. Nucl Phys. 1963;47:266–72.

    Article  CAS  Google Scholar 

  126. Flynn DS, Hershberger RL, Gabbard F. Sub-Coulomb proton absorption for isotopes of zirconium and molybdenum. Phys Rev C. 1979;20:1700–5.

    Article  CAS  Google Scholar 

  127. Skakun EA, Batij VG, Rakivnenko YN, Rastrepin OA. Excitation functions and isomer ratio for up-to-9 MeV proton interactions with Zr and Mo isotope nuclei. Yad Fiz. 1987;46:28–39.

    Google Scholar 

  128. Uddin MS, Hagiwara M, Tarkanyi F, Ditroi F, Baba M. Experimental studies on the proton-induced activation reactions of molybdenum in the energy range 22–67MeV. Appl Radiat Isot. 2004;60:911–20.

    Article  CAS  PubMed  Google Scholar 

  129. Eckelman WC. Unparalleled contribution of technetium-99m to medicine over 5 decades. JACC Cardiovasc Imaging. 2009;2:364–8.

    Article  PubMed  Google Scholar 

  130. Einstein AJ. Breaking America’s dependence on imported molybdenum. JACC Cardiovasc Imaging. 2009;2:369–71.

    Article  PubMed  PubMed Central  Google Scholar 

  131. IAEA. Radiotracer generators for industrial applications. IAEA radiation technology series. Vienna: International Atomic Energy Agency; 2013.

    Google Scholar 

  132. Van Noorden R. Radioisotopes: the medical testing crisis. Nature. 2013;504:202–4.

    Article  PubMed  CAS  Google Scholar 

  133. Beaver JE, Hupf HB. Production of 99mTc on a medical cyclotron: a feasibility study. J Nucl Med. 1971;12:739–41.

    CAS  PubMed  Google Scholar 

  134. Qaim SM, Sudar S, Scholten B, Koning AJ, Coenen HH. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc-reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot. 2014;85:101–13.

    Article  CAS  PubMed  Google Scholar 

  135. Bénard F, Buckley KR, Ruth TJ, Zeisler SK, Klug J, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah J-P, Valliant J, Kovacs MS, Schaffer P. Implementation of multi-curie production of 99mTc by conventional medical cyclotrons. J Nucl Med. 2014;55:1017–22.

    Article  PubMed  CAS  Google Scholar 

  136. Schaffer P, Bénard F, Bernstein A, Buckley K, Celler A, Cockburn N, Corsaut J, Dodd M, Economou C, Eriksson T, Frontera M, Hanemaayer V, Hook B, Klug J, Kovacs M, Prato FS, McDiarmid S, Ruth TJ, Shanks C, Valliant JF, Zeisler S, Zetterberg U, Zavodszky PA. Direct production of 99mTc via 100Mo(p,2n) on small medical cyclotrons. Phys Procedia. 2015;66:383–95.

    Article  CAS  Google Scholar 

  137. Chen K, Cui M. Recent progress in the development of metal complexes as b-amyloid imaging probes in the brain. Medchemcomm. 2017;8:1393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Takács S, Tárkányi F, Hermanne A. Validation and upgrading of the recommended cross-section data of charged particle reactions: gamma emitter radioisotopes. Nucl Instrum Methods Phys Res, Sect B. 2005;240:790–802.

    Article  CAS  Google Scholar 

  139. Coenen HH, Mertens J, Mazieère B, Bläuenstein P, Emond P, Frangin Y, Guilloteau D, Gysemans M, Holschbach M, Loc’h C, Schubiger AP, Qaim SM. Radioionidation reactions for radio pharmaceuticals: compendium for effective synthesis strategies. New York, NY: Springer; 2006. p. 1–101.

    Book  Google Scholar 

  140. IAEA. Final report of a coordinated research project “Charged-particle cross section database for medical radioisotope production”: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC-1211. Vienna: International Atomic Energy Agency; 2001.

    Google Scholar 

  141. Hassan KF, Qaim SM, Saleh ZA, Coenen HH. Alpha-particle induced reactions on natsb and 121Sb with particular reference to the production of the medically interesting radionuclide 124I. Appl Radiat Isot. 2006;64:101–9.

    Article  CAS  PubMed  Google Scholar 

  142. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging. 2008;52:159–65.

    CAS  PubMed  Google Scholar 

  143. Tárkányi F, Takács S, Király B, Szelecsényi F, Andó L, Bergman J, Heselius SJ, Solin O, Hermanne A, Shubin YN, Ignatyuk AV. Excitation functions of 3He- and α-particle induced nuclear reactions on natSb for production of medically relevant 123I and 124I radioisotopes. Appl Radiat Isot. 2009;67:1001–6.

    Article  PubMed  CAS  Google Scholar 

  144. Aslam MN, Sudar S, Hussain M, Malik AA, Shah HA, Qaim SM. Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124. Appl Radiat Isot. 2010;68:1760–73.

    Article  CAS  PubMed  Google Scholar 

  145. IAEA. Nuclear medicine in thyroid cancer management: a practical approach. IAEA, 2009. IAEA TECDOC-1608. Vienna: International Atomic Energy Agency; 2009.

    Google Scholar 

  146. Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol. 1987;15:170–7.

    Article  CAS  PubMed  Google Scholar 

  147. Qaim SM. Cyclotron production of medical radionuclides. In: Vertes A, et al., editors. Handbook of nuclear chemsitry. Dordrecht: Kluwer; 2003. p. 47–79.

    Google Scholar 

  148. Raleigh DR, Seymour ZA, Tomlin B, Theodosopoulos PV, Berger MS, Aghi MK, Geneser SE, Krishnamurthy D, Fogh SE, Sneed PK, McDermott MW. Resection and brain brachytherapy with permanent iodine-125 sources for brain metastasis. J Neurosurg. 2017;126:1749–55.

    Article  CAS  PubMed  Google Scholar 

  149. Huang H, Xu S, Li F, Du Z, Wang L. Clinical application of computed tomography-guided 125I seed interstitial implantation for head and neck cancer patients with unmanageable cervical lymph node metastases. Eur J Med Res. 2016;21:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Bennett CL, Qureshi ZP, Sartor AO, Norris LB, Murday A, Xirasagar S, Thomsen HS. Gadolinium-induced nephrogenic systemic fibrosis: the rise and fall of an iatrogenic disease. Clin Kidney J. 2012;5:82–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Denzler FO, Lebedev NA, Novgorodov AF, Rösch F, Qaim SM. Production and radiochemical separation of 147Gd. Appl Radiat Isot. 1997;48:319–26.

    Article  CAS  Google Scholar 

  152. Nayak D, Lahiri S, Ramaswami A, Manohor SB. Separation of no-carrier added Gd-147,Gd-149 and Eu-147 produced in 70 MeV B-11 irradiated praseodymium foil target. Radiochim Acta. 1999;87:93–6.

    CAS  Google Scholar 

  153. West HI, Lanier RG, Mustafa MG, Nuckolls RN, Frehaut J, Adam A, Philis CA. Proton and deuteron excitation functions for Eu-151 and Eu-153. Brookhaven Natl Lab Rep. 1989;42382:87–90.

    Google Scholar 

  154. Takács S, Tárkányi F, Hermanne A, Adam-Rebeles R, Takács MP. Excitation functions for the formation of longer lived isotopes by deuteron irradiation of Europium. Nucl Instrum Methods Phys Res, Sect B. 2013;310:54–66.

    Article  CAS  Google Scholar 

  155. Bao ZY, Beer H, Kappeler F, Voss F, Wisshak K, Rauscher T. Neutron cross sections for nucleosynthesis studies. At Data Nucl Data Tables. 2000;76:70–154.

    Article  CAS  Google Scholar 

  156. IAEA. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. AEA TECDOC series I. Vienna: International Atomic Energy Agency; 1999.

    Google Scholar 

  157. Qaim SM, Spahn I, Kandil SA, Coenen HH. Nuclear data for production of 88Y, 140Nd, 153Sm and 169Yb via novel routes. Radiochim Acta. 2007;95:313–7.

    CAS  Google Scholar 

  158. Dash A, Chakraborty S, Pillai MRA, Knapp FF. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm. 2015;30:47–71.

    Article  CAS  PubMed  Google Scholar 

  159. Hermanne A, Takacs S, Goldberg MB, Lavie E, Shubin YN, Kovalev S. Deuteron-induced reactions on Yb: measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides. Nucl Instrum Methods Phys Res, Sect B. 2006;247:223–31.

    Article  CAS  Google Scholar 

  160. Manenti S, Bonardi ML, Gini L, Groppi F. Physical optimization of production by deuteron irradiation of high specific activity 177gLu suitable for radioimmunotherapy. Nucl Med Biol. 2014;41:407–9.

    Article  CAS  PubMed  Google Scholar 

  161. Pillai MRA, Venkatesh M, Banerjee S, Samuel G, Kothari K, Dash A, Unni PR, Korde A, Bapat K, Pandey U, Das T, Chakraborty S, Mukherjee A, Sharma HD. Labeling techniques of biomolecules for targeted radiotherapy. IAEA-TECDOC-1359. Vienna: IAEA; 2003. p. 107–22.

    Google Scholar 

  162. Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, Mier W, Eder M, Kopka K, Haberkorn U. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    Article  CAS  PubMed  Google Scholar 

  163. Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323:135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Miyahara H, Wurdiyanto G, Nagata H, Yoshida A, Yanagida K, Mori C. Precise measurements of the gamma-ray emission probabilities of 186Re and 188Re. Appl Radiat Isot. 2000;52:573–9.

    Article  CAS  PubMed  Google Scholar 

  165. Mastren T, Radchenko V, Bach HT, Balkin ER, Birnbaum ER, Brugh M, Engle JW, Gott MD, Guthrie J, Hennkens HM, John KD, Ketring AR, Kuchuk M, Maassen JR, Naranjo CM, Nortier FM, Phelps TE, Jurisson SS, Wilbur DS, Fassbender ME. Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam. Nucl Med Biol. 2017;49:24–9.

    Article  CAS  PubMed  Google Scholar 

  166. Guerra Liberal FDC, Tavares AAS, Tavares JMRS. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot. 2016;110:87–99.

    Article  CAS  PubMed  Google Scholar 

  167. Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot. 2002;57:657–64.

    Article  CAS  PubMed  Google Scholar 

  168. Hussain M, Sudar S, Aslam MN, Malik AA, Ahmad R, Qaim SM. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim Acta. 2010;98:385–95.

    Article  CAS  Google Scholar 

  169. Lewis RE, Eldridge JS. Production of 70-day Tungsten-188 and development of a 17 hour rhenium-188 radioisotope generator. J Nucl Med. 1966;7:804.

    Google Scholar 

  170. Knapp FF, Callahan AP, Beets AL, Mirzadeh S, Hsieh BT. Processing of reactor-produced 188W for fabrication of clinical scale alumina-based 188W/188Re generators. Appl Radiat Isot. 1994;45:1123–8.

    Article  CAS  Google Scholar 

  171. Uddin MS, Scholten B, Hermanne A, Sudár S, Coenen HH, Qaim SM. Radiochemical determination of cross sections of α-particle induced reactions on 192Os for the production of the therapeutic radionuclide 193mPt. Appl Radiat Isot. 2010;68:2001–6.

    Article  CAS  PubMed  Google Scholar 

  172. Hilgers K, Coenen HH, Qaim SM. Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via α-particle-induced reactions on 192Os. Appl Radiat Isot. 2008;66:545–51.

    Article  CAS  PubMed  Google Scholar 

  173. Takács S, Ditrói F, Szűcs Z, Aikawa M, Haba H, Komori Y, Saito M. Measurement of activation cross sections of alpha particle induced reactions on iridium up to an energy of 50 MeV. Appl Radiat Isot. 2018;136:133–42.

    Article  PubMed  CAS  Google Scholar 

  174. Meyer GJ. Astatine. J Label Compd Radiopharm. 2018;61:154–64.

    Article  CAS  Google Scholar 

  175. Vaidyanathan G, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm. 2011;4:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vaidyanathan G, Zalutsky MR. Astatine radiopharmaceuticals: prospects and problems. Curr Radiopharm. 2008;1:177–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zalutsky MR, Pruszynski M. Astatine-211: production and availability. Curr Radiopharm. 2011;4:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hermanne A, Tárkányi F, Takács S, Szücs Z, Shubin YN, Dityuk AI. Experimental study of the cross-sections of α-particle induced reactions on 209Bi. Appl Radiat Isot. 2005;63:1–9.

    Article  CAS  PubMed  Google Scholar 

  179. Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60:1371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, Morgenstern A. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795–802.

    Article  CAS  PubMed  Google Scholar 

  181. Alfassi ZB, Bonardi M, Groppi F, Menapace E. A new alpha-emitter for nuclear medicine: 230U. J Radioanal Nucl Chem. 2006;270:483–7.

    Article  CAS  Google Scholar 

  182. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77:6288–91.

    Article  CAS  PubMed  Google Scholar 

  183. Apostolidis C, Molinet R, McGinley J, Abbas K, Mollenbeck J, Morgenstern A. Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot. 2005;62:383–7.

    Article  CAS  PubMed  Google Scholar 

  184. Weidner JW, Mashnik SG, John KD, Hemez F, Ballard B, Bach H, Birnbaum ER, Bitteker LJ, Couture A, Dry D, Fassbender ME, Gulley MS, Jackman KR, Ullmann JL, Wolfsberg LE, Nortier FM. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl Radiat Isot. 2012;70:2602–7.

    Article  CAS  PubMed  Google Scholar 

  185. Melville G, Meriarty H, Metcalfe P, Knittel T, Allen BJ. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl Radiat Isot. 2007;65:1014–22.

    Article  CAS  PubMed  Google Scholar 

  186. Chen X, Ji M, Fisher DR, Wai CM. Ionizable calixarene-crown ethers with high selectivity for radium over light alkaline earth metal ions. Inorg Chem. 1999;38:5449–52.

    Article  CAS  Google Scholar 

  187. Guseva LI. A tandem generator system for production of 223Ra and 211Pb/211Bi in DTPA solutions suitable for potential application in radiotherapy. J Radioanal Nucl Chem. 2009;281:577.

    Article  CAS  Google Scholar 

  188. Westrøm S, Malenge M, Jorstad Ida S, Napoli E, Bruland Øyvind S, Bønsdorff Tina B, Larsen Roy H. Ra-224 labeling of calcium carbonate microparticles for internal α-therapy: preparation, stability, and biodistribution in mice. J Label Compd Radiopharm. 2018;61:472–86.

    Article  CAS  Google Scholar 

  189. Abou DS, Pickett J, Mattson JE, Thorek DLJ. A Radium-223 microgenerator from cyclotron-produced trace Actinium-227. Appl Radiat Isot. 2017;119:36–42.

    Article  CAS  PubMed  Google Scholar 

  190. Mokhodoeva O, Guseva L, Dogadkin N. Isolation of generator-produced 223Ra in 0.9-% NaCl solutions containing EDTA for direct radiotherapeutic studies. J Radioanal Nucl Chem. 2015;304:449–53.

    Article  CAS  Google Scholar 

  191. Soderquist CZ, McNamara BK, Fisher DR. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr Radiopharm. 2012;5:244–52.

    Article  CAS  PubMed  Google Scholar 

  192. Larsen R, Bruland O (2006) Thorium-227 for use in radiotherapy of soft tissue disease Patent US 20060228297 A1

    Google Scholar 

  193. Transparency Market Research (2018) Radiopharmaceutical market will exhibit a CAGR of 5.4% between 2017 and 2024. http://www.sbwire.com/press-releases/radiopharmaceutical-market/release-983778.htm

  194. Schwochau K. Technetium: chemistry and radiopharmaceutical applications technetium: chemistry and radiopharmaceutical applications. Weinheim: Wiley; 2000.

    Book  Google Scholar 

  195. Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Label Compd Radiopharm. 2017;60:502–20.

    Article  CAS  Google Scholar 

  196. Blower PJ, Kettle AG, O’Doherty MJ, Coakley AJ, Knapp FF. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med. 2000;27:1405–9.

    Article  CAS  PubMed  Google Scholar 

  197. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120:7987–8.

    Article  CAS  Google Scholar 

  198. Satpati D, Mallia M, Kothari K, Pillai MRA. Comparative evaluation of 99mTc-(H2O)3(CO)3+ precursor synthesised by conventional method and by using carbonyl kit. J Label Compd Radiopharm. 2004;47:657–68.

    Article  CAS  Google Scholar 

  199. Banerjee SR, Maresca KP, Francesconi L, Valliant J, Babich JW, Zubieta J. New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl Med Biol. 2005;32:1–20.

    Article  CAS  PubMed  Google Scholar 

  200. Piramoon M, Hosseinimehr SJ. The past, current studies and future of organometallic 99mTc(CO)3 labeled peptides and proteins. Curr Pharm Des. 2016;22:4854–67.

    Article  CAS  PubMed  Google Scholar 

  201. Schibli R, Schubiger PA. Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2002;29:1529–42.

    Article  CAS  PubMed  Google Scholar 

  202. Mindt TL, Muller C, Stuker F, Salazar JF, Hohn A, Mueggler T, Rudin M, Schibli R. A “click chemistry” approach to the efficient synthesis of multiple imaging probes derived from a single precursor. Bioconjug Chem. 2009;20:1940–9.

    Article  CAS  PubMed  Google Scholar 

  203. Mindt TL, Struthers H, Brans L, Anguelov T, Schweinsberg C, Maes V, Tourwe D, Schibli R. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc. 2006;128:15096–7.

    Article  CAS  PubMed  Google Scholar 

  204. Andros G, Harper PV, Lathrop KA, McCardle RJ. Pertechnetate-99m localization in man with applications to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol Metab. 1965;25:1067.

    Article  CAS  PubMed  Google Scholar 

  205. Cho JY, Leveille R, Kao R, Rousset B, Parlow AF, Burak WE, Mazzaferri EL, Jhiang SM. Hormonal regulation of radioiodide uptake activity and Na+/I− symporter expression in mammary glands. J Clin Endocrinol Metab. 2000;85:2936–43.

    CAS  PubMed  Google Scholar 

  206. Jovanovic V, Konstantinovska D, Milivojevic K, Bzenic J. Determination of radiochemical purity and pharmacokinetic parameters of 99mTc-sulphur colloid and 99mTc-Tin colloid. Nuklearmedizin. 1981;20:279–82.

    Article  CAS  PubMed  Google Scholar 

  207. Suga K. Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas. Ann Nucl Med. 2002;16:303–10.

    Article  PubMed  Google Scholar 

  208. Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of technetium-99m MAG3 as a Hippuran replacement. J Nucl Med. 1986;27:111–6.

    CAS  PubMed  Google Scholar 

  209. Noll B, Johannsen B, May K, Spies H. Preparation of the renal function and imaging agent 99mTc-MAG3 starting from S-unprotected mercaptoacetyltriglycine. Int J Appl Radiat Isot. 1992;43:899–901.

    Article  CAS  Google Scholar 

  210. Erbas B, Tuncel M. Renal function assessment during peptide receptor radionuclide therapy. Semin Nucl Med. 2016;46:462–78.

    Article  PubMed  Google Scholar 

  211. Itoh K. 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med. 2001;15:179–90.

    Article  CAS  PubMed  Google Scholar 

  212. Taylor RD, MacCoss M, Lawson ADG. Combining molecular scaffolds from FDA approved drugs: application to drug discovery. J Med Chem. 2017;60:1638–47.

    Article  CAS  PubMed  Google Scholar 

  213. Dekemp RA, Renaud JM, Klein R, Beanlands RSB. Radionuclide tracers for myocardial perfusion imaging and blood flow quantification. Cardiol Clin. 2016;34:37.

    Article  PubMed  Google Scholar 

  214. Heo J, Iskandrian AS. Technetium-labeled myocardial perfusion agents. Cardiol Clin. 1994;12:187–98.

    Article  CAS  PubMed  Google Scholar 

  215. Kailasnath P, Sinusas AJ. Comparison of Tl-201 with Tc-99m-labeled myocardial perfusion agents: technical, physiologic, and clinical issues. J Nucl Cardiol. 2001;8:482–98.

    Article  CAS  PubMed  Google Scholar 

  216. Kiat H, Berman DS, Maddahi J. Myocardial perfusion imaging using technetium-99m radiopharmaceuticals. Radiol Clin North Am. 1993;31:795.

    CAS  PubMed  Google Scholar 

  217. Berman DS, Kiat H, Van Train K, Garcia E, Friedman J, Maddahi J. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med. 1991;21:190–212.

    Article  CAS  PubMed  Google Scholar 

  218. Taillefer R, Laflamme L, Dupras G, Picard M, Phaneuf D-C, Léveillé J. Myocardial perfusion imaging with 99mTc-methoxy-isobutyl-isonitrile (MIBI): comparison of short and long time intervals between rest and stress injections. Eur J Nucl Med. 1988;13:515–22.

    Article  CAS  PubMed  Google Scholar 

  219. Higley B, Smith FW, Smith T, Gemmell HG, Gupta PD, Gvozdanovic DV, Graham D, Hinge D, Davidson J, Lahiri A. Technetium-99m-1,2-bis[bis(2-ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med. 1993;34:30–8.

    CAS  PubMed  Google Scholar 

  220. Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ, Watson DD. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol. 1998;31:331–7.

    Article  CAS  PubMed  Google Scholar 

  221. Leonard J-P, Nowotnik DP, Neirinckx RD. Technetium-99m-d,1-HM-PAO: a new radiopharmaceutical for imaging regional brain perfusion using SPECT—a comparison with iodine-123 HIPDM. J Nucl Med. 1986;27:1819–23.

    CAS  PubMed  Google Scholar 

  222. Léveillé J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, Kupranick D, Walovitch RC. Characterization of technetium-99m-l,l-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med. 1989;30:1902–10.

    PubMed  Google Scholar 

  223. Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, Tikofsky RS, Stabin MG, Morgan RA, Goldsmith SJ. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med. 1989;30:599–604.

    CAS  PubMed  Google Scholar 

  224. Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, Watson AD, Ganey MV, Morgan RA, Williams SJ. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med. 1989;30:1892–901.

    CAS  PubMed  Google Scholar 

  225. Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA. The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab. 1988;8:S4–S12.

    Article  CAS  PubMed  Google Scholar 

  226. Suess E, Malessa S, Ungersböck K, Kitz P, Podreka I, Heimberger K, Hornykiewicz O, Deecke L. Technetium-99m-d, 1-hexamethylpropyleneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991;32:1675–81.

    CAS  PubMed  Google Scholar 

  227. Kung HF, Kung MP, Wey SP, Lin KJ, Yen TC. Clinical acceptance of a molecular imaging agent: a long march with [99mTc]TRODAT. Nucl Med Biol. 2007;34:787–9.

    Article  CAS  PubMed  Google Scholar 

  228. Kung M-P, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, Mu M, Lucki I, Kung HF. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med. 1997;24:372–80.

    CAS  PubMed  Google Scholar 

  229. Meegalla SK, Plössl K, Kung M-P, Stevenson DA, Mu KS, Liable-Sands LM, Rheingold AL, Kung HF. Specificity of diastereomers of [99mTc]TRODAT-1 as dopamine transporter imaging agents. J Med Chem. 1998;41:428–36.

    Article  CAS  PubMed  Google Scholar 

  230. Fallahi B, Esmaeili A, Beiki D, Oveisgharan S, Noorollahi-Moghaddam H, Erfani M, Tafakhori A, Rohani M, Fard-Esfahani A, Emami-Ardekani A, Geramifar P, Eftekhari M. Evaluation of 99mTc-TRODAT-1 SPECT in the diagnosis of Parkinson’s disease versus other progressive movement disorders. Ann Nucl Med. 2016;30:153–62.

    Article  CAS  PubMed  Google Scholar 

  231. Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson’s disease. J Nucl Med. 2004;45:207–13.

    CAS  PubMed  Google Scholar 

  232. Núñez EGF, Faintuch BL, Teodoro R, Wiecek DP, Martinelli JR, NGd S, Castanheira CE, Filho RSO, Pasqualini R. Influence of colloid particle profile on sentinel lymph node uptake. Nucl Med Biol. 2009;36:741–7.

    Article  PubMed  CAS  Google Scholar 

  233. van der Poel HG, Buckle T, Brouwer OR, Olmos RAV, van Leeuwen FWB. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60:826–33.

    Article  PubMed  Google Scholar 

  234. Azad AK, Rajaram MVS, Metz WL, Cope FO, Blue MS, Vera DR, Schlesinger LS. γ-Tilmanocept, a new radiopharmaceutical tracer for cancer sentinel lymph nodes, binds to the mannose receptor (CD206). J Immunol. 2015;195:2019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Baker JL, Pu M, Tokin CA, Hoh CK, Vera DR, Messer K, Wallace AM. Comparison of [99mTc]tilmanocept and filtered [99mTc]sulfur colloid for identification of SLNs in breast cancer patients. Ann Surg Oncol. 2015;22:40–5.

    Article  PubMed  Google Scholar 

  236. Surasi DS, O’Malley J, Bhambhvani P. 99mTc-tilmanocept: a novel molecular agent for lymphatic mapping and sentinel lymph node localization. J Nucl Med Technol. 2015;43:87–91.

    Article  PubMed  Google Scholar 

  237. Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: 99mTc-DTPA-mannosyl-dextran. J Nucl Med. 2001;42:951–9.

    CAS  PubMed  Google Scholar 

  238. Chen K, Chen X. Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol. 2011;38:70–86.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Hanahan D, Weinberg Robert A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  240. Wang X, Feng H, Zhao S, Xu J, Wu X, Cui J, Zhang Y, Qin Y, Liu Z, Gao T, Gao Y, Zeng W. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget. 2017;8:20476–95.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Adak S, Bhalla R, Vijaya Raj KK, Mandal S, Pickett R, Luthra SK. Radiotracers for SPECT imaging: current scenario and future prospects. Radiochim Acta. 2012;100:95–107.

    Article  CAS  Google Scholar 

  242. Belhocine TZ, Blankenberg FG, Kartachova MS, Stitt LW, Vanderheyden J-L, Hoebers FJP, Van de Wiele C. 99mTc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging. 2015;42:2083–97.

    Article  CAS  PubMed  Google Scholar 

  243. Kemerink GJ, Boersma HH, Thimister PW, Hofstra L, Liem I, Pakbiers M-TW, Janssen D, Reutelingsperger CP, Heidendal GA. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans. Eur J Nucl Med. 2001;28:1373–8.

    Article  CAS  PubMed  Google Scholar 

  244. Belhocine T, Steinmetz N, Green A, Rigo P. In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann NY Acad Sci. 2006;1010:525–9.

    Article  CAS  Google Scholar 

  245. Steinmetz N (2004) North American Scientific releases updated observations from European clinical trials of 99mTc-Hynic-annexin. in 51st. In: Annual meeting of the society of nuclear medicine, Philadelphia, PA

    Google Scholar 

  246. Van de Wiele C, Lahorte C, Vermeersch H, Loose D, Mervillie K, Steinmetz ND, Vanderheyden J-L, Cuvelier CA, Slegers G, Dierck RA. Quantitative tumor apoptosis imaging using technetium-99m–HYNIC annexin V single photon emission computed tomography. J Clin Oncol. 2003;21:3483–7.

    Article  PubMed  Google Scholar 

  247. Vermeersch H, Ham H, Rottey S, Lahorte C, Corsetti F, Dierckx R, Steinmetz N, Van de Wiele C. Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mTc-HYNIC annexin-V imaging in head and neck carcinoma. Cancer Biother Radiopharm. 2004;19:205–10.

    Article  CAS  PubMed  Google Scholar 

  248. Vermeersch H, Loose D, Lahorte C, Mervillie K, Dierckx R, Steinmetz N, Vanderheyden J-L, Cuvelier C, Slegers G, Van de Wiele C. 99mTc-HYNIC annexin-V imaging of primary head and neck carcinoma. Nucl Med Commun. 2004;25:259–63.

    Article  PubMed  Google Scholar 

  249. Haas RLM, de Jong D, Valdés Olmos RA, Hoefnagel CA, van Den Heuvel I, Zerp SF, Bartelink H, Verheij M. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int J Rad Oncol Biol Phys. 2004;59:782–7.

    Article  Google Scholar 

  250. Kartachova M, Haas RLM, Valdés Olmos RA, Hoebers FJP, van Zandwijk N, Verheij M. In vivo imaging of apoptosis by 99mTc-annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol. 2004;72:333–9.

    Article  CAS  PubMed  Google Scholar 

  251. Rottey S, Slegers G, Van Belle S, Goethals I, Van De Wiele C. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med. 2006;47:1813–8.

    CAS  PubMed  Google Scholar 

  252. Rottey S, Loose D, Vakaet L, Lahorte C, Vermeersch H, Van Belle S, Van De Wiele CV. 99mTc-HYNIC annexin-V imaging of tumors and its relationship to response to radiotherapy and/or chemotherapy. Q J Nucl Med Mol Imaging. 2007;51:182–8.

    CAS  PubMed  Google Scholar 

  253. Kartachova M, van Zandwijk N, Burgers S, van Tinteren H, Verheij M, Olmos RAV. Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer. J Clin Oncol. 2007;25:2534–9.

    Article  CAS  PubMed  Google Scholar 

  254. Kartachova MS, Olmos RAV, Haas RLM, Hoebers FJR, Herk MV, Verheij M. 99mTc-HYNIC-rh-annexin-V scintigraphy: visual and quantitative evaluation of early treatment-induced apoptosis to predict treatment outcome. Nucl Med Commun. 2008;29:39–44.

    Article  PubMed  Google Scholar 

  255. Hoebers FJP, Kartachova M, de Bois J, van den Brekel MWM, van Tinteren H, van Herk M, Rasch CRN, Valdés Olmos RA, Verheij M. 99mTc Hynic-rh-annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2008;35:509–18.

    Article  CAS  PubMed  Google Scholar 

  256. Loose D, Vermeersch H, De Vos F, Deron P, Slegers G, Van de Wiele C. Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck. Eur J Nucl Med Mol Imaging. 2008;35:47–52.

    Article  CAS  PubMed  Google Scholar 

  257. Rottey S, Van Den Bossche B, Slegers G, Van Belle S, Van De Wiele C. Influence of chemotherapy on the biodistribution of [99mTc]hydrazinonicotinamide annexin V in cancer patients. Q J Nucl Med Mol Imaging. 2009;53:127–32.

    CAS  PubMed  Google Scholar 

  258. Kurihara H, Yang DJ, Cristofanilli M, Erwin WD, Yu D-F, Kohanim S, Mendez R, Kim EE. Imaging and dosimetry of 99mTc EC annexin v: preliminary clinical study targeting apoptosis in breast tumors. Appl Radiat Isot. 2008;66:1175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Schaper FL, Reutelingsperger CP. 99mTc-HYNIC-annexin A5 in oncology: evaluating efficacy of anti-cancer therapies. Cancers. 2013;5:550–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Cai WB, Rao JH, Gambhir SS, Chen XY. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther. 2006;5:2624–33.

    Article  CAS  PubMed  Google Scholar 

  261. Chen K, Conti PS. Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev. 2010;62:1005–22.

    Article  CAS  PubMed  Google Scholar 

  262. Bozon-Petitprin A, Bacot S, Gauchez AS, Ahmadi M, Bourre JC, Marti-Batlle D, Perret P, Broisat A, Riou LM, Claron M, Boturyn D, Fagret D, Ghezzi C, Vuillez JP. Targeted radionuclide therapy with RAFT-RGD radiolabelled with 90Y or 177Lu in a mouse model of αvβ3-expressing tumours. Eur J Nucl Med Mol Imaging. 2015;42:252–63.

    Article  CAS  PubMed  Google Scholar 

  263. Chen HJ, Niu G, Wu H, Chen XY. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6:78–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Shao G, Gu W, Guo M, Zang S, Fu J, Liu S, Wang F, Wang Z. Clinical study of 99mTc-3P-RGD2 peptide imaging in osteolytic bone metastasis. Oncotarget. 2017;8:75587–96.

    Article  PubMed  PubMed Central  Google Scholar 

  265. O’Connor MK, Morrow MMB, Hunt KN, Boughey JC, Wahner-Roedler DL, Conners AL, Rhodes DJ, Hruska CB. Comparison of Tc-99m maraciclatide and Tc-99m sestamibi molecular breast imaging in patients with suspected breast cancer. EJNMMI Res. 2017;7:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Axelsson R, Bach-Gansmo T, Castell-Conesa J, McParland BJ. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the a avb3-selective angiogenesis imaging agent 99mTc-NC100692. Acta Radiol. 2010;51:40–6.

    Article  PubMed  Google Scholar 

  267. Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, Tangerud Å, Tobin D. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47:1434–9.

    CAS  PubMed  Google Scholar 

  268. Bach-Gansmo T, Bogsrud TV, Skretting A. Integrin scintimammography using a dedicated breast imaging, solid-state gamma-camera and 99mTc-labelled NC100692. Clin Physiol Funct Imaging. 2008;28:235–9.

    Article  PubMed  Google Scholar 

  269. Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, Yang A, Jia B, Jing X, Liu S, Shi J, Liu Z, Zhao Z, Wang F, Li F. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53:716–22.

    Article  PubMed  Google Scholar 

  270. Zhao D, Jin X, Li F, Liang J, Lin Y. Integrin αvβ3 imaging of radioactive iodine–refractory thyroid cancer using 99mTc-3PRGD2. J Nucl Med. 2012;53:1872–7.

    Article  CAS  PubMed  Google Scholar 

  271. Zhang Z, Zhao X, Ding C, Wang J, Zhang J, Wang F. 99mTc-3PRGD2 SPECT/CT imaging for monitoring early response of EGFR-TKIs therapy in patients with advanced-stage lung adenocarcinoma. Cancer Biother Radiopharm. 2016;31:238–45.

    Article  CAS  PubMed  Google Scholar 

  272. Jin X, Liang N, Wang M, Meng Y, Jia B, Shi X, Li S, Luo J, Luo Y, Cui Q, Zheng K, Liu Z, Shi J, Li F, Wang F, Zhu Z. Integrin imaging with 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non–small cell lung cancer. Radiology. 2016;281:958–66.

    Article  PubMed  Google Scholar 

  273. Miao W, Zheng S, Dai H, Wang F, Jin X, Zhu Z, Jia B. Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study. PLoS One. 2014;9:e111221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Liu L, Song Y, Gao S, Ji TF, Zhang HS, Ji B, Chen B, Jia B, Wang F, Xu ZL, Ma QJ. 99mTc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions. Mol Imaging. 2014;13:28650261.

    Google Scholar 

  275. Dijkgraaf I, Kruijtzer JAW, Liu S, Soede AC, Oyen WJG, Corstens FHM, Liskamp RMJ, Boerman OC. Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging. 2007;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  276. Liu Z, Niu G, Shi J, Liu S, Wang F, Liu S, Chen X. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:947–57.

    Article  CAS  PubMed  Google Scholar 

  277. Sancey L, Garanger E, Foillard S, Schoehn G, Hurbin A, Albiges-Rizo C, Boturyn D, Souchier C, Grichine A, Dumy P, Coll J-L. Clustering and internalization of integrin αvβ3 with a tetrameric RGD-synthetic peptide. Mol Ther. 2009;17:837–43.

    Article  CAS  PubMed  Google Scholar 

  278. Shi J, Kim Y-S, Chakraborty S, Jia B, Wang F, Liu S. 2-Mercaptoacetylglycylglycyl (MAG2) as a bifunctional chelator for 99mTc-labeling of cyclic RGD dimers: effect of technetium chelate on tumor uptake and pharmacokinetics. Bioconjug Chem. 2009;20:1559–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhou Y, Kim Y-S, Chakraborty S, Shi J, Gao H, Liu S. 99mTc-Labeled cyclic RGD peptides for noninvasive monitoring of tumor integrin αvβ3 expression. Mol Imaging. 2011;10:7290.2011.00006.

    Article  CAS  Google Scholar 

  280. Chen B, Zhao G, Ma Q, Ji B, Ji T, Xin H, Gao S. 99mTc-3P-RGD2 SPECT to monitor early response to bevacizumab therapy in patients with advanced non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8:16064–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Krenning EP, Bakker WH, Kooij PPM, Breeman WAP, Oei HY, de Jong M, Reubi JC, Visser TJ, Bruns C, Kwekkeboom DJ, Reijs AEM, van Hagen PM, Koper JW, Lamberts SWJ. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33:652–8.

    CAS  PubMed  Google Scholar 

  282. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58:61S–6S.

    Article  CAS  PubMed  Google Scholar 

  283. Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging. Semin Nucl Med. 2002;32:84–91.

    Article  PubMed  Google Scholar 

  284. Mikołajczak R, Maecke HR. Radiopharmaceuticals for somatostatin receptor imaging. Nucl Med Rev. 2016;19:126–32.

    Article  Google Scholar 

  285. Reubi JC, Schär J-C, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  286. Rodrigues M, Traub-Weidinger T, Leimer M, Li S, Andreae F, Angelberger P, Dudczak R, Virgolini I. Value of 111In-DOTA-lanreotide and 111In-DOTA-DPhe1-Tyr3-octreotide in differentiated thyroid cancer: results of in vitro binding studies and in vivo comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:1144–51.

    Article  CAS  PubMed  Google Scholar 

  287. Rodrigues M, Traub-Weidinger T, Li S, Ibi B, Virgolini I. Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2006;33:532–40.

    Article  PubMed  Google Scholar 

  288. Virgolini I, Britton K, Buscombe J, Moncayo R, Paganelli G, Riva P. 111In- and 90Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med. 2002;32:148–55.

    Article  PubMed  Google Scholar 

  289. Virgolini I, Szilvasi I, Kurtaran A, Angelberger P, Raderer M, Havlik E, Vorbeck F, Bischof C, Leimer M, Dorner G, Kletter K, Niederle B, Scheithauer W, Smith-Jones P. Indium-111-DOTA-lanreotide: biodistribution, safety and radiation absorbed dose in tumor patients. J Nucl Med. 1998;39:1928–36.

    CAS  PubMed  Google Scholar 

  290. Forrer F, Uusijärvi H, Waldherr C, Cremonesi M, Bernhardt P, Mueller-Brand J, Maecke HR. A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1257–62.

    Article  CAS  PubMed  Google Scholar 

  291. Giovacchini G, Giovannini E, Riondato M, Ciarmiello A. Radiopharmaceuticals for the diagnosis and therapy of neuroendocrine differentiated prostate cancer. Curr Radiopharm. 2017;10:6–15.

    Article  PubMed  CAS  Google Scholar 

  292. Carrasquillo JA, Pandit-Taskar N, Chen CC. Radionuclide therapy of adrenal tumors. J Surg Oncol. 2012;106:632–42.

    Article  PubMed  Google Scholar 

  293. Carrasquillo JA, Pandit-Taskar N, Chen CC. I-131 metaiodobenzylguanidine therapy of pheochromocytoma and paraganglioma. Semin Nucl Med. 2016;46:203–14.

    Article  PubMed  Google Scholar 

  294. Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, Sperandeo A, Arnone G, Ficola U. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev. 2015;18:102–6.

    Article  Google Scholar 

  295. Grünwald F, Ezziddin S. 131I-Metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2010;40:153–63.

    Article  PubMed  Google Scholar 

  296. Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36:258–78.

    Article  PubMed  Google Scholar 

  297. Van Vickle SS, Thompson RC. 123I-MIBG imaging: patient preparation and technologist’s role. J Nucl Med Technol. 2015;43:82–6.

    Article  PubMed  Google Scholar 

  298. Vöö S, Bucerius J, Mottaghy FM. I-131-MIBG therapies. Methods. 2011;55:238–45.

    Article  PubMed  CAS  Google Scholar 

  299. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BLF. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.

    Article  PubMed  Google Scholar 

  300. Case J, Courter S, Van Vickle S, Bateman T. Novel approaches to measuring 123I-labeled mIBG heart-to-mediastinal (H/M) ratios in a high efficiency, small field of view cardiac SPECT system. J Nucl Med. 2015;56:407.

    Google Scholar 

  301. Dimitriu-Leen AC, Scholte AJHA, Jacobson AF. 123I-MIBG SPECT for evaluation of patients with heart failure. J Nucl Med. 2015;56:25S–30S.

    Article  PubMed  CAS  Google Scholar 

  302. Cavina L, van der Born D, Klaren PHM, Feiters MC, Boerman OC, Rutjes FPJT, editors. Design of radioiodinated pharmaceuticals: structural features affecting metabolic stability towards in vivo deiodination. Eur J Org Chem. 2017;2017:3387–414.

    Google Scholar 

  303. Kung HF, Kung M-P, Choi SR. Radiopharmaceuticals for single-photon emission computed tomography brain imaging. Semin Nucl Med. 2003;33:2–13.

    Article  PubMed  Google Scholar 

  304. Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2013;84:1288–95.

    Article  PubMed  Google Scholar 

  305. Djang DSW, Janssen MJR, Bohnen N, Booij J, Henderson TA, Herholz K, Minoshima S, Rowe CC, Sabri O, Seibyl J, Van Berckel BNM, Wanner M. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53:154–63.

    Article  CAS  PubMed  Google Scholar 

  306. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, Pupi A. European association of nuclear medicine procedure guidelines for brain neurotransmission SPET using I-123-labelled dopamine transporter ligands. Eur J Nucl Med Mol Imaging. 2002;29:BP30–5.

    Article  CAS  PubMed  Google Scholar 

  307. Wu X, Cai H, Ge R, Li L, Jia Z. Recent progress of imaging agents for Parkinson’s disease. Curr Neuropharmacol. 2014;12:551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Innis R, Zoghbi S, Johnson E, Woods S, Al-Tikriti M, Baldwin R, Seibyl J, Malison R, Zubal G, Charney D, Heninger G, Hoffer P. SPECT imaging of the benzodiazepine receptor in non-human primate brain with [123I]Ro 16-0154. Eur J Pharmacol. 1991;193:249–52.

    Article  CAS  PubMed  Google Scholar 

  309. Zoghbi SS, Baldwin RM, Seibyl JP, Al-Tikriti MS, Zea-Ponce Y, Laruelle M, Sybirska EH, Woods SW, Goddard AW, Malison RT, Zimmerman R, Charney DS, Smith EO, Hoffer PB, Innis RB. Pharmacokinetics of the SPECT benzodiazepine receptor radioligand [123I]iomazenil in human and non-human primates. Nucl Med Biol. 1992;19:881–8.

    CAS  Google Scholar 

  310. Pinborg LH, Videbaek C, Hasselbalch SG, Sorensen SA, Wagner A, Paulson OB, Knudsen GM. Benzodiazepine receptor quantification in Huntington’s disease with [[123]I]iomazenil and SPECT. J Neurol Neurosurg Psychiatry. 2001;70:657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Verhoeff N, Soares JC, D’Souza CD, Gil R, Degen K, Abi-Dargham A, Zoghbi SS, Fujita M, Rajeevan N, Seibyl JP, Krystal JH, van Dyck CH, Charney DS, Innis RB. [123I]Iomazenil SPECT benzodiazepine receptor imaging in schizophrenia. Psychiatry Res Neuroimaging. 1999;91:163–73.

    Article  CAS  Google Scholar 

  312. Bremner JD, Innis RB, White T, Fujita M, Silbersweig D, Goddard AW, Staib L, Stern E, Cappiello A, Woods S, Baldwin R, Charney DS. SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder. Biol Psychiatry. 2000;47:96–106.

    Article  CAS  PubMed  Google Scholar 

  313. Moriwaki H, Matsumoto M, Hashikawa K, Oku N, Ishida M, Seike Y, Fukuchi K, Hori M, Nishimura T. Iodine-123-iomazenil and iodine-123-iodoamphetamine SPECT in major cerebral artery occlusive disease. J Nucl Med. 1998;39:1348–53.

    CAS  PubMed  Google Scholar 

  314. Hatazawa J, Satoh T, Shimosegawa E, Okudera T, Inugami A, Ogawa T, Fujita H, Noguchi K, Kanno I, Miura S, Murakami M, Iida H, Miura Y, Uemura K. Evaluation of cerebral infarction with iodine 123-iomazenil SPECT. J Nucl Med. 1995;36:2154–61.

    CAS  PubMed  Google Scholar 

  315. Abiko K, Ikoma K, Shiga T, Katoh C, Hirata K, Kuge Y, Kobayashi K, Tamaki N. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury. EJNMMI Res. 2017;7:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Koizumi H, Fujisawa H, Kurokawa T, Suehiro E, Iwanaga H, Nakagawara J, Suzuki M. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury. J Cereb Blood Flow Metab. 2010;30:1673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Kung HF, Pan S, Kung M-P, Billings J, Kasliwal R, Reilley J, Alavi A. In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med. 1989;30:88–92.

    CAS  PubMed  Google Scholar 

  318. Heinzel A, Mohammadkhani Shali S, Dafotakis M, Verburg FA, Mottaghy FM, Winz OH. Comparison of automatic versus manual procedures for the quantification of dopamine D2 receptor availability using I-123-IBZM-SPECT. Nucl Med Commun. 2015;36:1120–6.

    Article  CAS  PubMed  Google Scholar 

  319. Hammesfahr S, Antke C, Mamlins E, Beu M, Wojtecki L, Ferrea S, Dinkelbach L, Moldovan AS, Schnitzler A, Müller HW, Südmeyer M. FP-CIT- and IBZM-SPECT in corticobasal syndrome: results from a clinical follow-up study. Neurodegener Dis. 2016;16:342–7.

    Article  CAS  PubMed  Google Scholar 

  320. Långström B, Karimi F, Watanabe Y. Endogenous compounds labeled with radionuclides of short half-life—some perspectives. J Label Compd Radiopharm. 2013;56:251–62.

    Article  CAS  Google Scholar 

  321. Woods DH, Baker MI, Keightley JD, Keightley LJ, Makepeace JL, Pearce AK, Woodman AP, Woods MJ, Woods SA, Waters S. Standardisation of 11C. Appl Radiat Isot. 2002;56:327–30.

    Article  CAS  PubMed  Google Scholar 

  322. Miller PW, Kato K, Långström B. Carbon-11, nitrogen-13, and oxygen-15 chemistry: an introduction to chemistry with short-lived radioisotopes. In: Long NJ, Wong W-T, editors. The chemistry of molecular imaging. Hoboken, NJ: Wiley; 2014. p. 79–103.

    Google Scholar 

  323. Allard M, Fouquet E, James D, Szlosek-Pinaud M. State of art in 11C labelled radiotracers synthesis. Curr Med Chem. 2008;15:235–77.

    Article  CAS  PubMed  Google Scholar 

  324. Ermert J, Coenen HH. Methods for 11C- and 18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Label Compd Radiopharm. 2013;56:225–36.

    Article  CAS  Google Scholar 

  325. Pekošak A, Filp U, Poot AJ, Windhorst AD. From carbon-11-labeled amino acids to peptides in positron emission tomography: the synthesis and clinical application. Mol Imaging Biol. 2018;20(4):510–32.

    Article  PubMed  CAS  Google Scholar 

  326. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [1−11C]acetate—an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot. 1982;33:505–12.

    Article  CAS  PubMed  Google Scholar 

  327. Norenberg JP, Simpson NR, Dunn BB, Kiesewetter DO. Remote synthesis of [11C]acetate. Int J Appl Radiat Isot. 1992;43:943–5.

    Article  CAS  Google Scholar 

  328. Mock BH, Brown-Proctor C, Green MA, Steele B, Glick-Wilson BE, Zheng Q-H. An automated SPE-based high-yield synthesis of [11C]acetate and [11C]palmitate: no liquid–liquid extraction, solvent evaporation or distillation required. Nucl Med Biol. 2011;38:1135–42.

    Article  CAS  PubMed  Google Scholar 

  329. Le Helleix S, Dollé F, Kuhnast B. Easy upgrade of the TRACERLab FX C Pro for [11C]carboxylation reactions: application to the routine production of [1-11C]acetate. Appl Radiat Isot. 2013;82:7–11.

    Article  PubMed  CAS  Google Scholar 

  330. McCarron JA, Turton DR, Pike VW, Poole KG. Remotely-controlled production of the 5-HT1A receptor radioligand, carbonyl-11C WAY-100635, via 11C-carboxylation of an immobilized Grignard reagent. J Label Compd Radiopharm. 1996;38:941–53.

    Article  CAS  Google Scholar 

  331. Långström B, Lundqvist H. The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionine. Int J Appl Radiat Isot. 1976;27:357–63.

    Article  PubMed  Google Scholar 

  332. Holschbach M, Schüller M. A new and simple on-line method for the preparation of n.c.a. [11C]methyl iodide. Appl Radiat Isot. 1993;44:779–80.

    Article  CAS  Google Scholar 

  333. Larsen P, Ulin J, Dahlstrøm K, Jensen M. Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isot. 1997;48:153–7.

    Article  CAS  Google Scholar 

  334. Link JM, Krohn KA, Clark JC. Production of [11C]CH3I by single pass reaction of [11C]CH4 with I2. Nucl Med Biol. 1997;24:93–7.

    Article  CAS  PubMed  Google Scholar 

  335. Buckley KR, Huser JM, Jivan S, Chun KS, Ruth TJ. 11C-methane production in small volume, high pressure gas targets. Radiochim Acta. 2000;88:201.

    Article  CAS  Google Scholar 

  336. Holschbach M, Schüller M. An on-line method for the preparation of n.c.a. [11CH3]trifluoromethanesulfonic acid methyl ester. Appl Radiat Isot. 1993;44:897–8.

    Article  CAS  Google Scholar 

  337. Hara T, Yuasa M. Automated synthesis of [11C]choline, a positron-emitting tracer for tumor imaging. Appl Radiat Isot. 1999;50:531–3.

    Article  CAS  PubMed  Google Scholar 

  338. Någren K, Halldin C. Methylation of amide and thiol functions with [11C]methyl triflate, as exemplified by [11C]NMSP, [11C]flumazenil and [11C]methionine. J Label Compd Radiopharm. 1998;41:831–41.

    Article  Google Scholar 

  339. Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.

    Article  CAS  PubMed  Google Scholar 

  340. Dannals RF, Ravert HT, James Frost J, Wilson AA, Donald Burns H, Wagner HN. Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J Appl Radiat Isot. 1985;36:303–6.

    Article  CAS  PubMed  Google Scholar 

  341. Langer O, Nagren K, Dolle F, Lundkvist C, Sandell J, Swahn CG, Vaufrey F, Crouzel C, Maziere B, Halldin C. Precursor synthesis and radiolabelling of the dopamine D2 receptor ligand [11C]raclopride from [11C]methyl triflate. J Label Compd Radiopharm. 1999;42:1183–93.

    Article  CAS  Google Scholar 

  342. Comar D, Cartron JC, Maziere M, Marazano C. Labelling and metabolism of methionine methyl-11C. Eur J Nucl Med. 1976;1:11–4.

    Article  CAS  PubMed  Google Scholar 

  343. Mitterhauser M, Wadsak W, Krcal A, Schmaljohann J, Eidherr H, Schmid A, Viernstein H, Dudczak R, Kletter K. New aspects on the preparation of [11C]methionine—a simple and fast online approach without preparative HPLC. Appl Radiat Isot. 2005;62:441–5.

    Article  CAS  PubMed  Google Scholar 

  344. Gómez V, Gispert JD, Amador V, Llop J. New method for routine production of L-[methyl-11C]methionine: in loop synthesis. J Label Compd Radiopharm. 2008;51:83–6.

    Article  CAS  Google Scholar 

  345. Iwata R, Pascali C, Yuasa M, Yanai K, Takahashi T, Ido T. On-line [11C]methylation using [11C]methyl iodide for the automated preparation of 11C-radiopharmaceuticals. Int J Appl Radiat Isot. 1992;43:1083–8.

    Article  CAS  Google Scholar 

  346. Studenov AR, Jivan S, Adam MJ, Ruth TJ, Buckley KR. Studies of the mechanism of the in-loop synthesis of radiopharmaceuticals. Appl Radiat Isot. 2004;61:1195–201.

    Article  CAS  PubMed  Google Scholar 

  347. Watkins GL, Jewett DM, Keith Mulholland G, Kilbourn MR, Toorongian SA. A captive solvent method for rapid N-[11C]methylation of secondary amides: application to the benzodiazepine, 4′-chlorodiazepam (RO5-4864). Int J Appl Radiat Isot. 1988;39:441–4.

    Article  CAS  Google Scholar 

  348. Wilson AA, Garcia A, Jin L, Houle S. Radiotracer synthesis from [11C]-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol. 2000;27:529–32.

    Article  CAS  PubMed  Google Scholar 

  349. Shao X, Hoareau R, Runkle AC, Tluczek LJM, Hockley BG, Henderson BD, Scott PJH. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FXC-Pro. J Label Compd Radiopharm. 2011;54:819–38.

    Article  CAS  Google Scholar 

  350. Samuelsson L, Långström B. Synthesis of 1-(2′-deoxy-2′-fluoro-beta-D-arabinofuranosyl)-[methyl-11C]thymine ([11C]FMAU) via a Stille cross-coupling reaction with [11C]methyl iodide. J Label Compd Radiopharm. 2003;46:263–72.

    Article  CAS  Google Scholar 

  351. Miller PW, Bender D. [11C]carbon disulfide: a versatile reagent for PET radiolabelling. Chem Eur J. 2012;18:433–6.

    Article  CAS  PubMed  Google Scholar 

  352. Roeda D, Crouzel C. [11C]Formaldehyde revisited: considerable concurrent [11C]formic acid formation in the low-temperature conversion of [11C]carbon dioxide into [11C]formaldehyde. Appl Radiat Isot. 2001;54:935–9.

    Article  CAS  PubMed  Google Scholar 

  353. Kato K, Zhang M-R, Suzuki K. Rapid C-carboxylation of nitro[11C]methane for the synthesis of ethyl nitro[2-11C]acetate. Mol BioSyst. 2008;4:53–5.

    Article  CAS  PubMed  Google Scholar 

  354. Långström B, Itsenko O, Rahman O. [11C]Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET-ligand development. J Label Compd Radiopharm. 2007;50:794–810.

    Article  CAS  Google Scholar 

  355. Schelbert HR, Phelps ME, Huang SC, Macdonald NS, Hansen H, Kuhl DE. N-13 ammonia as an indicator of myocardial blood-flow. Circulation. 1981;63:1259–72.

    Article  CAS  PubMed  Google Scholar 

  356. Suda M, Onoguchi M, Tomiyama T, Ishihara K, Takahashi N, Sakurai M, Matsumoto K, Kumita S-i. The reproducibility of time-of-flight PET and conventional PET for the quantification of myocardial blood flow and coronary flow reserve with 13N-ammonia. J Nucl Cardiol. 2016;23:457–72.

    Article  PubMed  Google Scholar 

  357. Cooper AJL. 13N as a tracer for studying glutamate metabolism. Neurochem Int. 2011;59:456–64.

    Article  CAS  PubMed  Google Scholar 

  358. Bormans G, Langendries W, Mortelmans L, Verbruggen A. On-line anion exchange purification of [13N]NH3 produced by 10 MeV proton irradiation of dilute aqueous ethanol. Appl Radiat Isot. 1995;46:83–6.

    Article  CAS  Google Scholar 

  359. Statuto M, Galli E, Bertagna F, Migliorati E, Zanella I, Di Lorenzo D, De Agostini A, Rodella C, Apostoli P, Caimi L, Giubbini R, Biasiotto G. The strange case of the [13N]NH3: validation of the production process for human use. Nucl Med Commun. 2016;37:412–21.

    Article  CAS  PubMed  Google Scholar 

  360. Suzuki K, Yoshida Y. Production of [13N]NH3 with ultra-high specific activity. Appl Radiat Isot. 1999;50:497–503.

    Article  CAS  Google Scholar 

  361. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle J-L, Verbruggen R, Ghyoot M. In-target production of [13N]ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Int J Appl Radiat Isot. 1991;42:1095–8.

    Article  CAS  Google Scholar 

  362. Berridge MS, Landmeier BJ. In-target production of [13N]ammonia: target design, products, and operating parameters. Appl Radiat Isot. 1993;44:1433–41.

    Article  CAS  PubMed  Google Scholar 

  363. Vaalburg W, Kamphuis JAA, Beerling-van der Molen HD, Reiffers S, Rijskamp A, Woldring MG. An improved method for the cyclotron production of 13N-labelled ammonia. Int J Appl Radiat Isot. 1975;26:316–8.

    Article  CAS  PubMed  Google Scholar 

  364. Baron J-C, Jones T. Oxygen metabolism, oxygen extraction and positron emission tomography: historical perspective and impact on basic and clinical neuroscience. NeuroImage. 2012;61:492–504.

    Article  PubMed  Google Scholar 

  365. Zhang K, Herzog H, Mauler J, Filss C, Okell TW, Kops ER, Tellmann L, Fischer T, Brocke B, Sturm W, Coenen HH, Shah NJ. Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab. 2014;34:1373–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  366. Palmer BM, Sajjad M, Rottenberg DA. An automated [15O]H2O production and injection system for PET imaging. Nucl Med Biol. 1995;22:241–9.

    Article  CAS  PubMed  Google Scholar 

  367. Sajjad M, Liow J-S, Moreno-Cantu J. A system for continuous production and infusion of [15O]H2O for PET activation studies. Appl Radiat Isot. 2000;52:205–10.

    Article  CAS  PubMed  Google Scholar 

  368. Berridge MS, Kjellström R. Designs and use of silver [18O]water targets for [18F]fluoride production. Appl Radiat Isot. 1999;50:699–705.

    Article  CAS  Google Scholar 

  369. Ferrieri RA, Alexoff DL, Schlyer DJ, Wolf AP. Remote processing, delivery and injection of H2[15O] produced from a N2/H2 gas target using a simple and compact apparatus. Appl Radiat Isot. 1994;45:1149–54.

    Article  CAS  PubMed  Google Scholar 

  370. Mulholland GK, Kilbourn MR, Moskwa JJ. Direct simultaneous production of [15O]water and [13N]ammonia or [18F]fluoride ion by 26 MeV proton irradiation of a double chamber water target. Int J Appl Radiat Isot. 1990;41:1193–9.

    Article  CAS  Google Scholar 

  371. Van Naemen J, Monclus M, Damhaut P, Luxen A, Goldman S. Production, automatic delivery and bolus injection of [15O]water for positron emission tomography studies. Nucl Med Biol. 1996;23:413–6.

    Article  PubMed  Google Scholar 

  372. Park BK, Kitteringham NR. Effects of fluorine substitution on drug metabolism: pharmacological and toxicological implications. Drug Metab Rev. 1994;26:605–43.

    Article  CAS  PubMed  Google Scholar 

  373. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of fluorine in medicinal chemistry. J Med Chem. 2015;58:8315–59.

    Article  CAS  PubMed  Google Scholar 

  374. Coenen HH. Fluorine-18 labeling methods: features and possibilities of basic reactions. In: Schubiger PA, Lehmann L, Friebe M, editors. PET chemistry: the driving force in molecular imaging. Ernst Schering Research Foundation workshop, vol. 62. Berlin: Springer-Verlag; 2007. p. 15–50.

    Chapter  Google Scholar 

  375. Coenen HH, Ermert J. 18F-labelling innovations and their potential for clinical application. Clin Transl Imaging. 2018;6:169–93.

    Article  Google Scholar 

  376. Ermert J, Coenen HH. No-carrier-added [18F]fluorobenzene derivatives as intermediates for built-up radiosyntheses. Curr Radiopharm. 2010;3:127–60.

    Article  CAS  Google Scholar 

  377. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, Kuhl DE. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;14:175–83.

    Article  CAS  Google Scholar 

  378. Shiue C-Y, Salvadori PA, Wolf AP, Fowler JS, MacGregor RR. A new improved synthesis of 2-deoxy-2-[18F]fluoro-D-glucose from 18F-labeled acetyl hypofluorite. J Nucl Med. 1982;23:899–903.

    CAS  PubMed  Google Scholar 

  379. Firnau G, Chirakal R, Sood S, Garnett S. Aromatic fluorination with xenon difluoride: L-3,4-dihydroxy-6-fluorophenylalanine. Can J Chem. 1980;58:1449–50.

    Article  CAS  Google Scholar 

  380. Coenen HH, Franken K, Kling P, Stöcklin G. Direct electrophilic radiofluorination of phenylalanine, tyrosine and dopa. Int J Appl Radiat Isot. 1988;39:1243–50.

    Article  CAS  Google Scholar 

  381. Chirakal R, Firnau G, Couse J, Garnett ES. Radiofluorination with 18F-labelled acetyl hypofluorite: [18F]L-6-fluorodopa. Int J Appl Radiat Isot. 1984;35:651–3.

    Article  CAS  Google Scholar 

  382. Fowler JS, Shiue CY, Wolf AP, Salvadori PA, MacGregor RR. 18F-labeled acetyl hypofluorite for radiotracer synthesis. J Label Compd Radiopharm. 1982;19:1634–6.

    Google Scholar 

  383. Hiller A, Fischer C, Jordanova A, Patt JT, Steinbach J. Investigations to the synthesis of n.c.a. [18F]FClO3 as electrophilic fluorinating agent. Appl Radiat Isot. 2008;66:152–7.

    Article  CAS  PubMed  Google Scholar 

  384. Adam MJ, Ruth TJ, Grierson JR, Abeysekera B, Pate BD. Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite. J Nucl Med. 1986;27:1462–6.

    CAS  PubMed  Google Scholar 

  385. de Vries EFJ, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-l-DOPA. Appl Radiat Isot. 1999;51:389–94.

    Article  Google Scholar 

  386. Forsback S, Eskola O, Haaparanta M, Bergmann J, Solin O. Electrophilic synthesis of 6-[18F]fluoro-L-DOPA using post-target produced [18F]F2. Radiochim Acta. 2008;96:845–8.

    Article  CAS  Google Scholar 

  387. Stenhagen ISR, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V. Fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun. 2013;49:1386–8.

    Article  CAS  Google Scholar 

  388. Murali D, Flores LG, Roberts AD, Nickles RJ, DeJesus OT. Aromatic l-amino acid decarboxylase (AAAD) inhibitors as carcinoid tumor-imaging agents: synthesis of 18F-labeled α-fluoromethyl-6-fluoro-m-tyrosine (FM-6-FmT). Appl Radiat Isot. 2003;59:237–43.

    Article  CAS  PubMed  Google Scholar 

  389. Coenen HH, Moerlein SM. Regiospecific aromatic fluorodemetallation of group IVb metalloarenes using elemental fluorine or acetyl hypofluorite. J Fluor Chem. 1987;36:63–75.

    Article  CAS  Google Scholar 

  390. Teare H, Robins EG, Årstad E, Luthra SK, Gouverneur V. Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem Commun. 2007;23:2330–2.

    Article  Google Scholar 

  391. Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F]fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Appl Radiat Isot. 1990;41:733–8.

    Article  CAS  Google Scholar 

  392. Oberdorfer F, Hofmann E, Maier-Borst W. Preparation of 18F-labelled N-fluoropyridinium triflate. J Label Compd Radiopharm. 1988;25:999–1005.

    Article  CAS  Google Scholar 

  393. Purrington ST, Jones WA. 1-Fluoro-2-pyridone: a useful fluorinating reagent. J Org Chem. 1983;48:761–2.

    Article  CAS  Google Scholar 

  394. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew Chem Int Ed Engl. 2010;49:6821–4.

    Article  CAS  PubMed  Google Scholar 

  395. Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science. 2011;334:639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Zlatopolskiy BD, Zischler J, Urusova EA, Endepols H, Kordys E, Frauendorf H, Mottaghy FM, Neumaier B. A practical one-pot synthesis of positron emission tomography (PET) tracers via nickel-mediated radiofluorination. Chem Open. 2015;4:457–62.

    CAS  Google Scholar 

  397. Lee E, Hooker JM, Ritter T. Nickel-mediated oxidative fluorination for PET with aqueous [18F]fluoride. J Am Chem Soc. 2012;134:17456–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD. Neither azeotropic drying, nor base nor other additives: a minimalist approach to 18F-labeling. Org Biomol Chem. 2014;12:8094–9.

    Article  CAS  PubMed  Google Scholar 

  399. Dollé F, Helfenbein J, Hinnen F, Mavel S, Mincheva Z, Saba W, Schollhorn-Peyronneau MA, Valette H, Garreau L, Chalon S, Halldin C, Madelmont JC, Deloye JB, Bottlaender M, Le Gailliard J, Guilloteau D, Emond P. One-step radiosynthesis of [18F]LBT-999: a selective radioligand for the visualization of the dopamine transporter with PET. J Label Compd Radiopharm. 2007;50:716–23.

    Article  CAS  Google Scholar 

  400. Mukherjee J, Christian BT, Dunigan KA, Shi BZ, Narayanan TK, Satter M, Mantil J. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46:170–88.

    Article  CAS  PubMed  Google Scholar 

  401. Mukherjee J, Yang Z-Y, Brown T, Lew R, Wernick M, Ouyang X, Yasillo N, Chen C-T, Mintzer R, Cooper M. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol. 1999;26:519–27.

    Article  CAS  PubMed  Google Scholar 

  402. Lee SJ, Oh SJ, Moon WY, Choi MS, Kim JS, Chi DY, Moon DH, Ryu JS. New automated synthesis of [18F]FP-CIT with base amount control affording high and stable radiochemical yield: a 1.5-year production report. Nucl Med Biol. 2011;38:593–7.

    Article  CAS  PubMed  Google Scholar 

  403. Gründer G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz H-G, Stoeter P, Drzezga A, Lüddens H, Rösch F, Bartenstein P. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med. 2001;28:1463–70.

    Article  PubMed  CAS  Google Scholar 

  404. Wang HL, Guo XY, Jiang SD, Tang GH. Automated synthesis of [18F]Florbetaben as Alzheimer’s disease imaging agent based on a synthesis module system. Appl Radiat Isot. 2013;71:41–6.

    Article  CAS  PubMed  Google Scholar 

  405. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.

    CAS  PubMed  Google Scholar 

  406. Bourdier T, Greguric I, Roselt P, Jackson T, Faragalla J, Katsifis A. Fully automated one-pot radiosynthesis of O-(2-[18F]fluoroethyl)-L-tyrosine on the TracerLab FXFN module. Nucl Med Biol. 2011;38:645–51.

    Article  CAS  PubMed  Google Scholar 

  407. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine. Appl Radiat Isot. 2002;57:853–6.

    Article  CAS  PubMed  Google Scholar 

  408. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25:1212–21.

    CAS  PubMed  Google Scholar 

  409. Römer J, Steinbach J, Kasch H. Studies on the synthesis of 16α-[18F]fluoroestradiol. Appl Radiat Isot. 1996;47:395–9.

    Article  Google Scholar 

  410. Ahmed N, Langlois R, Rodrigue S, Bénard F, van Lier JE. Automated synthesis of 11b-methoxy-4,16a-[16a-18F]difluoroestradiol (4F-M[18F]FES) for estrogen receptor imaging by positron emission tomography. Nucl Med Biol. 2007;34:459–64.

    Article  CAS  PubMed  Google Scholar 

  411. Marchand P, Ouadi A, Pellicioli M, Schuler J, Laquerriere P, Boisson F, Brasse D. Automated and efficient radiosynthesis of [18F]FLT using a low amount of precursor. Nucl Med Biol. 2016;43:520–7.

    Article  CAS  PubMed  Google Scholar 

  412. Been LB, Suurmeijer AJH, Cobben DCP, Jager PL, Hoekstra HJ, Elsinga PH. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.

    Article  PubMed  Google Scholar 

  413. Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol. 2000;27:143–56.

    Article  CAS  PubMed  Google Scholar 

  414. Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem. 2000;243:843–6.

    Article  CAS  Google Scholar 

  415. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with F-18 FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  CAS  PubMed  Google Scholar 

  416. Chang CW, Chou TK, Liu RS, Wang SJ, Lin WJ, Chen CH, Wang HE. A robotic synthesis of [18F]fluoromisonidazole ([18F]FMISO). Appl Radiat Isot. 2007;65:682–6.

    Article  CAS  PubMed  Google Scholar 

  417. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of fluorine-18 fluoromisonidazole. J Nucl Med. 1989;30:343–50.

    CAS  PubMed  Google Scholar 

  418. Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012;15:45–55.

    Article  CAS  PubMed  Google Scholar 

  419. Ponde DE, Dence CS, Oyama N, Kim J, Tai Y-C, Laforest R, Siegel BA, Welch MJ. 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging—in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med. 2007;48:420–8.

    CAS  PubMed  Google Scholar 

  420. Zhou D, Lin M, Yasui N, Al-Qahtani MH, Dence CS, Schwarz S, Katzenellenbogen JA. Optimization of the preparation of fluorine-18-labeled steroid receptor ligands 16alpha-18F-fluoroestradiol (FES), 18F-fluoro furanyl norprogesterone (FFNP), and 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) as radiopharmaceuticals. J Label Compd Radiopharm. 2014;57:371–7.

    Article  CAS  Google Scholar 

  421. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJB, Wiebe LI, Schwaiger M. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med. 2005;46:106–13.

    PubMed  Google Scholar 

  422. Turton DR, Betts HM, Dutton D, Perkins AC. Automated radiosynthesis of GMP quality [18F]HX4 for PET imaging of hypoxia. Nucl Med Biol. 2015;42:494–8.

    Article  CAS  PubMed  Google Scholar 

  423. Liu YJ, Zhu L, Plossl K, Choi SR, Qiao HW, Sun XT, Li S, Zha ZH, Kung HF. Optimization of automated radiosynthesis of [18F]AV-45: a new PET imaging agent for Alzheimer’s disease. Nucl Med Biol. 2010;37:917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Ding YS, Fowler JS, Gatley SJ, Dewey SL, Wolf AP, Schlyer DJ. Synthesis of high specific activity 6-[18F]fluorodopamine for positron emission tomography studies of sympathetic nervous tissue. J Med Chem. 1991;34:861–3.

    Article  CAS  PubMed  Google Scholar 

  425. Shiue CY, Shiue GG, Mozley PD, Kung MP, Zhuang ZP, Kim HJ, Kung HF. p-[18F]-MPPF: a potential radioligand for PET studies of 5-HT1A receptors in humans. Synapse. 1997;25:147–54.

    Article  CAS  PubMed  Google Scholar 

  426. Martinez G, Vernooij RWM, Padilla PF, Zamora J, Flicker L, Cosp XB. 18F PET with flutemetamol for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;11:CD012884.

    PubMed  Google Scholar 

  427. Kilbourn MR, Welch MJ, Dence CS. Carrier-added and no-carrier-added syntheses of [18F]spiroperidol and [18F]haloperidol. Int J Appl Radiat Isot. 1984;35:591–8.

    Article  CAS  PubMed  Google Scholar 

  428. Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med. 1991;32:2266–72.

    CAS  PubMed  Google Scholar 

  429. Preshlock S, Tredwell M, Gouverneur V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev. 2016;116:719–66.

    Article  CAS  PubMed  Google Scholar 

  430. Pike VW. Hypervalent aryliodine compounds as precursors for radiofluorination. J Label Compd Radiopharm. 2018;61:196–227.

    Article  CAS  Google Scholar 

  431. Ross TL, Ermert J, Hocke C, Coenen HH. Nucleophilic 18F-fluorination of heteroaromatic iodonium salts with no-carrier-added [18F]fluoride. J Am Chem Soc. 2007;129:8018–25.

    Article  CAS  PubMed  Google Scholar 

  432. Zhang MR, Kumata K, Suzuki K. A practical route for synthesizing a PET ligand containing [18F]fluorobenzene using reaction of diphenyliodonium salt with [18F]F−. Tetrahedron Lett. 2007;48:8632–5.

    Article  CAS  Google Scholar 

  433. Telu S, Chun J-H, Simeon FG, Lu S, Pike VW. Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org Biomol Chem. 2011;9(19):6629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Moon B, Park J, Lee H, Lee B, Kim S. Routine production of [18F]flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5-year production report. Mol Imaging Biol. 2014;16:619–25.

    Article  PubMed  Google Scholar 

  435. Xu R, Zanotti-Fregonara P, Zoghbi SS, Gladding RL, Woock AE, Innis RB, Pike VW. Synthesis and evaluation in monkey of [18F]4-fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide ([18F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1). J Med Chem. 2013;56:9146–55.

    Article  CAS  PubMed  Google Scholar 

  436. Jung Y-W, Jang KS, Gu G, Koeppe RA, Sherman PS, Quesada CA, Raffel DM. [18F]Fluoro-hydroxyphenethylguanidines: efficient synthesis and comparison of two structural isomers as radiotracers of cardiac sympathetic innervation. ACS Chem Neurosci. 2017;8:1530–42.

    Article  CAS  PubMed  Google Scholar 

  437. Edwards R, Westwell AD, Daniels S, Wirth T. Convenient synthesis of diaryliodonium salts for the production of [18F]F-DOPA. Eur J Org Chem. 2015;2015:625–30.

    Article  CAS  Google Scholar 

  438. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, Lemaire CF. Production at the curie level of no-carrier-added 6-18F-fluoro-L-dopa. J Nucl Med. 2013;54:1154–61.

    Article  CAS  PubMed  Google Scholar 

  439. Cardinale J, Ermert J, Humpert S, Coenen HH. Iodonium ylides for one-step, no-carrier-added radiofluorination of electron rich arenes, exemplified with 4-(([18F]fluorophenoxy)-phenylmethyl) piperidine NET and SERT ligands. RSC Adv. 2014;4:17293–9.

    Article  CAS  Google Scholar 

  440. Rotstein BH, Stephenson NA, Vasdev N, Liang SH. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat Commun. 2014;5:4365.

    Article  CAS  PubMed  Google Scholar 

  441. Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJH. Copper-catalyzed [18F]fluorination of (Mesityl)(aryl)iodonium salts. Org Lett. 2014;16:3224–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Génicot C, Gouverneur V. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed Engl. 2014;53:7751–5.

    Article  CAS  PubMed  Google Scholar 

  443. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJH. Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. Org Lett. 2015;17:5780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJH. Copper-mediated radiofluorination of arylstannanes with [18F]KF. Org Lett. 2016;18:5440–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Mossine AV, Brooks AF, Ichiishi N, Makaravage KJ, Sanford MS, Scott PJH. Development of customized [18F]fluoride elution techniques for the enhancement of copper-mediated late-stage radiofluorination. Sci Rep. 2017;7:233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  446. Zarrad F, Zlatopolskiy B, Krapf P, Zischler J, Neumaier B. A practical method for the preparation of 18F-labeled aromatic amino acids from nucleophilic [18F]fluoride and stannyl precursors for electrophilic radiohalogenation. Molecules. 2017;22:2231.

    Article  PubMed Central  Google Scholar 

  447. Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD. Alcohol-enhanced Cu-mediated radiofluorination. Chem Eur J. 2017;23:3251–6.

    Article  CAS  PubMed  Google Scholar 

  448. Zlatopolskiy BD, Zischler J, Krapf P, Zarrad F, Urusova EA, Kordys E, Endepols H, Neumaier B. Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem Eur J. 2015;21:5972–9.

    Article  CAS  PubMed  Google Scholar 

  449. Zischler J, Krapf P, Richarz R, Zlatopolskiy BD, Neumaier B. Automated synthesis of 4-[18F]fluoroanisole, [18F]DAA1106 and 4-[18F]FPhe using Cu-mediated radiofluorination under “minimalist” conditions. Appl Radiat Isot. 2016;115:133–7.

    Article  CAS  PubMed  Google Scholar 

  450. Mu L, Fischer CR, Holland JP, Becaud J, Schubiger PA, Schibli R, Ametamey SM, Graham K, Stellfeld T, Dinkelborg LM, Lehmann L. 18F-radiolabeling of aromatic compounds using triarylsulfonium salts. Eur J Org Chem. 2012;2012:889–92.

    Article  CAS  Google Scholar 

  451. Chun J-H, Morse CL, Chin FT, Pike VW. No-carrier-added [18F]fluoroarenes from the radiofluorination of diaryl sulfoxides. Chem Commun. 2013;49:2151–3.

    Article  CAS  Google Scholar 

  452. Ravert HT, Holt DP, Dannals RF. Synthesis of 2-([18F]fluoro)-3-[(2S)-2-azetidinylmethoxy]pyridine ([18F]2FA). In: Scott PJH, Hockley BG, editors. Radiochemical syntheses. Hoboken, NJ: John Wiley and Sons; 2012.

    Google Scholar 

  453. Fischer S, Hiller A, Smits R, Hoepping A, Funke U, Wenzel B, Cumming P, Sabri O, Steinbach J, Brust P. Radiosynthesis of racemic and enantiomerically pure (−)-[18F]flubatine—a promising PET radiotracer for neuroimaging of α4β2 nicotinic acetylcholine receptors. Appl Radiat Isot. 2013;74:128–36.

    Article  CAS  PubMed  Google Scholar 

  454. Cai H, Yin DZ, Zhang L, Wang YX. The synthesis of a new probe for PET imaging reporter gene HSV1-tk: 2-amino-6-[18F]fluoro-9-(4-hydroxy-3-hydroxymethylbutyl) purine (6-[18F]fluoropenciclovir). J Label Compd Radiopharm. 2006;49:653–61.

    Article  CAS  Google Scholar 

  455. Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M, Neels OC, Haberkorn U, Giesel FL, Kopka K. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med. 2017;58:425–31.

    Article  CAS  PubMed  Google Scholar 

  456. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges A-M, Marx H, Hesse R, Weber K, Smits R, Hoepping A, Müller M, Neels O, Kopka K. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals. 2017;10:77.

    Article  PubMed Central  CAS  Google Scholar 

  457. Smith GE, Sladen HL, Biagini SCG, Blower PJ. Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography. Dalton Trans. 2011;40:6196–205.

    Article  CAS  PubMed  Google Scholar 

  458. Burke BP, Clemente GS, Archibald SJ. Boron-18F containing positron emission tomography radiotracers: advances and opportunities. Contrast Media Mol Imaging. 2015;10:96–110.

    Article  CAS  PubMed  Google Scholar 

  459. Keller UAD, Bellac CL, Li Y, Lou YM, Lange PF, Ting R, Harwig C, Kappelhoff R, Dedhar S, Adam MJ, Ruth TJ, Benard F, Perrin DM, Overall CM. Novel matrix metalloproteinase inhibitor [18F]marimastat-aryltrifluoroborate as a probe for in vivo positron emission tomography imaging in cancer. Cancer Res. 2010;70:7562–9.

    Article  CAS  Google Scholar 

  460. Li Y, Ting R, Harwig CW, Auf Dem Keller U, Bellac CL, Lange PF, Inkster JAH, Schaffer P, Adam MJ, Ruth TJ, Overall CM, Perrin DM. Towards kit-like 18F-labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases. Medchemcomm. 2011;2:942–9.

    Article  CAS  Google Scholar 

  461. Li Z, Lin T-P, Liu S, Huang C-W, Hudnall TW, Gabbai FP, Conti PS. Rapid aqueous [18F]-labeling of a bodipy dye for positron emission tomography/fluorescence dual modality imaging. Chem Commun. 2011;47:9324–6.

    Article  CAS  Google Scholar 

  462. Hendricks JA, Keliher EJ, Wan D, Hilderbrand SA, Weissleder R, Mazitschek R. Synthesis of [18F]BODIPY: bifunctional reporter for hybrid optical/positron emission tomography imaging. Angew Chem. 2012;124:4681–4.

    Article  Google Scholar 

  463. Ortmeyer CP, Haufe G, Schwegmann K, Hermann S, Schafers M, Borgel F, Wunsch B, Wagner S, Hugenberg V. Synthesis and evaluation of a [18F]BODIPY-labeled caspase-inhibitor. Bioorg Med Chem. 2017;25:2167–76.

    Article  CAS  PubMed  Google Scholar 

  464. Schirrmacher R, Bradtmöller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, Wängler B, Niemeyer CM, Jurkschat K. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem Int Ed Engl. 2006;45:6047–50.

    Article  CAS  PubMed  Google Scholar 

  465. Bernard-Gauthier V, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R. From unorthodox to established: the current status of 18F-trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug Chem. 2016;27:267–79.

    Article  CAS  PubMed  Google Scholar 

  466. Lindner S, Michler C, Leidner S, Rensch C, Wängler C, Schirrmacher R, Bartenstein P, Wängler B. Synthesis and in vitro and in vivo evaluation of SiFA-tagged bombesin and RGD peptides as tumor imaging probes for positron emission tomography. Bioconjug Chem. 2014;25:738–49.

    Article  CAS  PubMed  Google Scholar 

  467. Höhne A, Mu L, Honer M, Schubiger PA, Ametamey SM, Graham K, Stellfeld T, Borkowski S, Berndorff D, Klar U, Voigtmann U, Cyr JE, Friebe M, Dinkelborg L, Srinivasan A. Synthesis, 18F-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjug Chem. 2008;19:1871–9.

    Article  PubMed  CAS  Google Scholar 

  468. Chen QS, Meng XJ, McQuade P, Rubins D, Lin SA, Zeng ZZ, Haley H, Miller P, Trotter DG, Low PS. Folate-PEG-NOTA-Al18F: a new folate based radiotracer for PET imaging of folate receptor-positive tumors. Mol Pharm. 2017;14:4353–61.

    Article  CAS  PubMed  Google Scholar 

  469. Al-Momani E, Israel I, Samnick S. Validation of a [Al18F]PSMA-11 preparation for clinical applications. Appl Radiat Isot. 2017;130:102–8.

    Article  CAS  PubMed  Google Scholar 

  470. Wan WX, Guo N, Pan DH, Yu CJ, Weng Y, Luo SN, Ding H, Xu YP, Wang LZ, Lang LX, Xie QG, Yang M, Chen XY. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med. 2013;54:691–8.

    Article  CAS  PubMed  Google Scholar 

  471. Cleeren F, Lecina J, Ahamed M, Raes G, Devoogdt N, Caveliers V, McQuade P, Rubins DJ, Li WP, Verbruggen A, Xavier C, Bormans G. Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017;46:4709–73.

    Article  PubMed  Google Scholar 

  473. Rodnick ME, Brooks AF, Hockley BG, Henderson BD, Scott PJH. A fully-automated one-pot synthesis of [18F]fluoromethylcholine with reduced dimethylaminoethanol contamination via [18F]fluoromethyl tosylate. Appl Radiat Isot. 2013;78:26–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  474. Shao X, Hockley BG, Hoareau R, Schnau PL, Scott PJH. Fully automated preparation of [11C]choline and [18F]fluoromethylcholine using TracerLab synthesis modules and facilitated quality control using analytical HPLC. Appl Radiat Isot. 2011;69:403–9.

    Article  CAS  PubMed  Google Scholar 

  475. Zuhayra M, Alfteimi A, Forstner CV, Lützen U, Meller B, Henze E. New approach for the synthesis of [18F]fluoroethyltyrosine for cancer imaging: simple, fast, and high yielding automated synthesis. Bioorg Med Chem. 2009;17:7441–8.

    Article  CAS  PubMed  Google Scholar 

  476. Kim D-Y, Kim H-J, Yu K-H, Min J-J. Synthesis of [18F]-labeled (2-(2-fluoroethoxy)ethyl)tris(4-methoxyphenyl)phosphonium cation as a potential agent for positron emission tomography myocardial imaging. Nucl Med Biol. 2012;39:1093–8.

    Article  CAS  PubMed  Google Scholar 

  477. Tang G, Zeng W, Yu M, Kabalka G. Facile synthesis ofN-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J Label Compd Radiopharm. 2008;51:68–71.

    Article  CAS  Google Scholar 

  478. Lang L, Eckelman WC. Labeling proteins at high specific activity using N-succinidyl 4-[18F](fluoromethyl) benzoate. Appl Radiat Isot. 1997;48:169–73.

    Article  CAS  PubMed  Google Scholar 

  479. Marik J, Sutcliffe JL. Fully automated preparation of n.c.a. 4-[18F]fluorobenzoic acid and N-succinimidyl 4-[18F]fluorobenzoate using a Siemens/CTI chemistry process control unit (CPCU). Appl Radiat Isot. 2007;65:199–203.

    Article  CAS  PubMed  Google Scholar 

  480. Basuli F, Zhang X, Woodroofe CC, Jagoda EM, Choyke PL, Swenson RE. Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: a method comparable to direct fluorination. J Label Compd Radiopharm. 2017;60:168–75.

    Article  CAS  Google Scholar 

  481. Olberg DE, Arukwe JM, Grace D, Hjelstuen OK, Solbakken M, Kindberg GM, Cuthbertson A. One step radiosynthesis of 6-[18F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J Med Chem. 2010;53:1732–40.

    Article  CAS  PubMed  Google Scholar 

  482. Hedberg E, Langström B. Synthesis of 4-([18F]fluoromethyl)phenyl isothiocyanate and its use in labelling oligonucleotides. Acta Chem Scand. 1997;51:1236–40.

    Article  CAS  Google Scholar 

  483. Downer JB, McCarthy TJ, Edwards WB, Anderson CJ, Welch MJ. Reactivity of p-[18F]fluorophenacyl bromide for radiolabeling of proteins and peptides. Appl Radiat Isot. 1997;48:907–16.

    Article  CAS  PubMed  Google Scholar 

  484. Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido) ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med. 2006;47:1172–80.

    CAS  PubMed  Google Scholar 

  485. de Bruin B, Kuhnast B, Hinnen F, Yaouancq L, Amessou M, Johannes L, Samson A, Boisgard R, Tavitian B, Dolle F. 1-3-(2-[18F]fluoropyridin-3-yloxy)propyl pyrrole-2,5-dione: design, synthesis, and radiosynthesis of a new [18F]fluoropyridine-based maleimide reagent for the labeling of peptides and proteins. Bioconjug Chem. 2005;16:406–20.

    Article  PubMed  CAS  Google Scholar 

  486. Berndt M, Pietzsch J, Wuest F. Labeling of low-density lipoproteins using the 18F-labeled thiol-reactive reagent N-[6-(4-[18]fluorobenzylidene)aminooxyhexyl]maleimide. Nucl Med Biol. 2007;34:5–15.

    Article  CAS  PubMed  Google Scholar 

  487. Speranza A, Ortosecco G, Castaldi E, Nardelli A, Pace L, Salvatore M. Fully automated synthesis procedure of 4-[18F]fluorobenzaldehyde by commercial synthesizer: amino-oxi peptide labelling prosthetic group. Appl Radiat Isot. 2009;67:1664–9.

    Article  CAS  PubMed  Google Scholar 

  488. Kuhnast B, Dollé F. The challenge of labeling macromolecules with fluorine-18: three decades of research. Curr Radiopharm. 2010;3:174–201.

    Article  CAS  Google Scholar 

  489. Maschauer S, Heilmann M, Wängler C, Schirrmacher R, Prante O. Radiosynthesis and preclinical evaluation of 18F-fluoroglycosylated octreotate for somatostatin receptor imaging. Bioconjug Chem. 2016;27:2707–14.

    Article  CAS  PubMed  Google Scholar 

  490. Choi JY, Lee BC. Click reaction: an applicable radiolabeling method for molecular imaging. Nucl Med Mol Imaging. 2015;49:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Meyer J-P, Adumeau P, Lewis JS, Zeglis BM. Click chemistry and radiochemistry: the first 10 years. Bioconjug Chem. 2016;27:2791–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Mamat C, Gott M, Steinbach J. Recent progress using the Staudinger ligation for radiolabeling applications. J Label Compd Radiopharm. 2018;61:165–78.

    Article  CAS  Google Scholar 

  493. Campbell-Verduyn LS, Mirfeizi L, Schoonen AK, Dierckx RA, Elsinga PH, Feringa BL. Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew Chem Int Ed Engl. 2011;50:11117–20.

    Article  CAS  PubMed  Google Scholar 

  494. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted 3+2 azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J Am Chem Soc. 2004;126:15046–7.

    Article  CAS  PubMed  Google Scholar 

  495. Zeng DX, Zeglis BM, Lewis JS, Anderson CJ. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J Nucl Med. 2013;54:829–32.

    Article  CAS  PubMed  Google Scholar 

  496. Blackman ML, Royzen M, Fox JM. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc. 2008;130:13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Selvaraj R, Liu SL, Hassink M, Huang CW, Yap LP, Park R, Fox JM, Li ZB, Conti PS. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg Med Chem Lett. 2011;21:5011–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Liu SL, Hassink M, Selvaraj R, Yap LP, Park R, Wang H, Chen XY, Fox JM, Li ZB, Conti PS. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol Imaging. 2013;12:121–8.

    Article  CAS  PubMed  Google Scholar 

  499. Reiner T, Keliher EJ, Earley S, Marinelli B, Weissleder R. Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew Chem Int Ed Engl. 2011;50:1922–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Keinanen O, Fung K, Pourat J, Jallinoja V, Vivier D, Pillarsetty NK, Airaksinen AJ, Lewis JS, Zeglis BM, Sarparanta M. Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res. 2017;7(1):95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  501. Gao Z, Gouverneur V, Davis BG. Enhanced aqueous Suzuki–Miyaura coupling allows site-specific polypeptide 18F-labeling. J Am Chem Soc. 2013;135:13612–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Way JD, Wang M, Hamann I, Wuest M, Wuest F. Synthesis and evaluation of 2-amino-5-(4-[18F]fluorophenyl)pent-4-ynoic acid ([18F]FPhPA): a novel 18F-labeled amino acid for oncologic PET imaging. Nucl Med Biol. 2014;41:660–9.

    Article  CAS  PubMed  Google Scholar 

  503. Wüst FR, Kniess T. Synthesis of 4-[18F]fluoroiodobenzene and its application in Sonogashira cross-coupling reactions. J Label Compd Radiopharm. 2003;46:699–713.

    Article  CAS  Google Scholar 

  504. Wüst FR, Höhne A, Metz P. Synthesis of 18F-labelled cyclooxygenase-2 (COX-2) inhibitors via Stille reaction with 4-[18F]fluoroiodobenzene as radiotracers for positron emission tomography (PET). Org Biomol Chem. 2005;3:503–7.

    Article  PubMed  Google Scholar 

  505. Qaim SM. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim Acta. 2011;99:611–25.

    Article  CAS  Google Scholar 

  506. Cascini GL, Niccoli Asabella A, Notaristefano A, Restuccia A, Ferrari C, Rubini D, Altini C, Rubini G. 124Iodine: a longer-life positron emitter isotope – new opportunities in molecular imaging. Biomed Res Int. 2014;2014:672094.

    Article  PubMed  PubMed Central  Google Scholar 

  507. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  508. Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, Kuwert T, Stöcklin G, Feinendegen LE. SPECT studies of brain tumors with L-3-[123I] iodo-α-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31:281–6.

    CAS  PubMed  Google Scholar 

  509. Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S, Scholten B, Coenen HH. Some optimisation studies relevant to the production of high-purity 124I and 124I at a small-sized cyclotron. Appl Radiat Isot. 2003;58:69–78.

    Article  CAS  PubMed  Google Scholar 

  510. Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, Burnazi E, Finn RD, Doubrovin M, Blasberg RG. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med. 2007;48:827–36.

    Article  CAS  PubMed  Google Scholar 

  511. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Tjuvajev JG. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A. 2001;98:9300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol. 2010;73:461–9.

    Article  CAS  PubMed  Google Scholar 

  513. Post RL, Jolly PC. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957;25:118–28.

    Article  CAS  PubMed  Google Scholar 

  514. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.

    CAS  PubMed  Google Scholar 

  515. Sciacca RR, Akinboboye O, Ling Chou R, Epstein S, Bergmann SR. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med. 2001;42:63–70.

    CAS  PubMed  Google Scholar 

  516. Magata Y, Temma T, Iida H, Ogawa M, Mukai T, Iida Y, Morimoto T, Konishi J, Saji H. Development of injectable O-15 oxygen and estimation of rat OEF. J Cereb Blood Flow Metab. 2003;23:671–6.

    Article  PubMed  Google Scholar 

  517. Yamauchi H, Higashi T, Kagawa S, Nishii R, Kudo T, Sugimoto K, Okazawa H, Fukuyama H. Is misery perfusion still a predictor of stroke in symptomatic major cerebral artery disease? Brain. 2012;135:2515–26.

    Article  PubMed  Google Scholar 

  518. Holland JP, Cumming P, Vasdev N. PET radiopharmaceuticals for probing enzymes in the brain. Am J Nucl Med Mol Imaging. 2013;3:194–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  519. Rempel BP, Price EW, Phenix CP. Molecular imaging of hydrolytic enzymes using PET and SPECT. Mol Imaging. 2017;16:1536012117717852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  520. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210:581–95.

    CAS  PubMed  Google Scholar 

  522. Brown RS, Wahl RL. Over expression of glut-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer. 1993;72:2979–85.

    Article  CAS  PubMed  Google Scholar 

  523. DeGrado TR, Wang SY, Holden JE, Nickles RJ, Taylor M, Stone CK. Synthesis and preliminary evaluation of 18F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation. Nucl Med Biol. 2000;27:221–31.

    Article  CAS  PubMed  Google Scholar 

  524. Noll C, Carpentier AC. Dietary fatty acid metabolism in prediabetes. Curr Opin Lipidol. 2017;28:1–10.

    CAS  PubMed  Google Scholar 

  525. Takala TO, Nuutila P, Pulkki K, Oikonen V, Gronroos T, Savunen T, Vahasilta T, Luotolahti M, Kallajoki M, Bergman J, Forsback S, Knuuti J. 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid as a tracer of free fatty acid uptake and oxidation in myocardium and skeletal muscle. Eur J Nucl Med Mol Imaging. 2002;29:1617–22.

    Article  CAS  PubMed  Google Scholar 

  526. Clary GL, Tsai C-F, Guynn RW. Substrate specificity of choline kinase. Arch Biochem Biophys. 1987;254:214–21.

    Article  CAS  PubMed  Google Scholar 

  527. Awwad HM, Geisel J, Obeid R. The role of choline in prostate cancer. Clin Biochem. 2012;45:1548–53.

    Article  CAS  PubMed  Google Scholar 

  528. Calabria F, Gallo G, Schillaci O, Cascini GL. Bio-distribution, imaging protocols and diagnostic accuracy of PET with tracers of lipogenesis in imaging prostate cancer: a comparison between 11C-choline, 18F-fluoroethylcholine and 18F-methylcholine. Curr Pharm Des. 2015;21:4738–47.

    Article  CAS  PubMed  Google Scholar 

  529. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, Reiman R, Price DT, Coleman RE. Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    CAS  PubMed  Google Scholar 

  530. Hara T. 18F-Fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;42:1815–7.

    CAS  PubMed  Google Scholar 

  531. Oprea-Lager DE, van Kanten MP, van Moorselaar RJA, van den Eertwegh AJM, van de Ven PM, Bijnsdorp IV, Hoekstra OS, Geldof AA. [18F]Fluoromethylcholine as a chemotherapy response read-out in prostate cancer cells. Mol Imaging Biol. 2015;17:319–27.

    Article  CAS  PubMed  Google Scholar 

  532. Hodolič M. Imaging of prostate cancer using 18F-choline PET/computed tomography. PET Clin. 2017;12:173–84.

    Article  PubMed  Google Scholar 

  533. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    CAS  PubMed  Google Scholar 

  534. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  535. Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol. 1996;23:17–22.

    Article  CAS  PubMed  Google Scholar 

  536. McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, Coffey RJ, Manning HC. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One. 2013;8:e58938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Schelhaas S, Heinzmann K, Bollineni VR, Kramer GM, Liu Y, Waterton JC, Aboagye EO, Shields AF, Soloviev D, Jacobs AH. Preclinical applications of 3′-deoxy-3′-[18F]fluoro-thymidine in oncology – a systematic review. Theranostics. 2017;7:40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  538. Alauddin MM. Nucleoside-based probes for imaging tumor proliferation using positron emission tomography. J Label Compd Radiopharm. 2013;56:237–43.

    Article  CAS  Google Scholar 

  539. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med. 2008;49:129S–48S.

    Article  CAS  PubMed  Google Scholar 

  540. Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, Rose S. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med. 2015;45:136–50.

    Article  PubMed  Google Scholar 

  541. Wuest M, Wuest F. Positron emission tomography radiotracers for imaging hypoxia. J Label Compd Radiopharm. 2013;56:244–50.

    Article  CAS  Google Scholar 

  542. Grönroos T, Eskola O, Lehtiö K, Minn H, Marjamäki P, Bergman J, Haaparanta M, Forsback S, Solin O. Pharmacokinetics of [18F]FETNIM: a potential hypoxia marker for PET. J Nucl Med. 2001;42:1397–404.

    PubMed  Google Scholar 

  543. Hayashi K, Furutsuka K, Takei M, Muto M, Nakao R, Aki H, Suzuki K, Fukumura T. High-yield automated synthesis of [18F]fluoroazomycin arabinoside ([18F]FAZA) for hypoxia-specific tumor imaging. Appl Radiat Isot. 2011;69:1007–13.

    Article  CAS  PubMed  Google Scholar 

  544. Reischl G, Ehrlichmann W, Bieg C, Solbach C, Kumar P, Wiebe LI, Machulla HJ. Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl Radiat Isot. 2005;62:897–901.

    Article  CAS  PubMed  Google Scholar 

  545. Kaneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, Ishikawa Y, Watanuki S, Furumoto S, Funaki Y, Nakata E, Jingu K, Tsujitani M, Ito M, Fukuda H, Takahashi S, Yamada S. Initial evaluation of dynamic human imaging using 18F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007;21:101–7.

    Article  CAS  PubMed  Google Scholar 

  546. Eskola O, Grönroos TJ, Forsback S, Tuomela J, Komar G, Bergman J, Härkönen P, Haaparanta M, Minn H, Solin O. Tracer level electrophilic synthesis and pharmacokinetics of the hypoxia tracer [18F]EF5. Mol Imaging Biol. 2012;14:205–12.

    Article  PubMed  Google Scholar 

  547. Silvoniemi A, Suilamo S, Laitinen T, Forsback S, Löyttyniemi E, Vaittinen S, Saunavaara V, Solin O, Grönroos TJ, Minn H. Repeatability of tumour hypoxia imaging using [18F]EF5 PET/CT in head and neck cancer. Eur J Nucl Med Mol Imaging. 2018;45:161–9.

    Article  CAS  PubMed  Google Scholar 

  548. Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136:1636S–40S.

    Article  CAS  PubMed  Google Scholar 

  549. Huang C, McConathy J. Fluorine-18 labeled amino acids for oncologic imaging with positron emission tomography. Curr Top Med Chem. 2013;13:871–91.

    Article  CAS  PubMed  Google Scholar 

  550. Jager PL, Vaalburg W, Pruim J, de Vries EGE, Langen K-J, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42:432–45.

    CAS  PubMed  Google Scholar 

  551. Gulyás B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging. 2012;56:173–90.

    PubMed  Google Scholar 

  552. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40:205–12.

    CAS  PubMed  Google Scholar 

  553. Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13:279–89.

    Article  PubMed  Google Scholar 

  554. Langen K-J, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.

    Article  CAS  PubMed  Google Scholar 

  555. Geisler S, Ermert J, Stoffels G, Willuweit A, Galldiks N, Filss CP, Shah NJ, Coenen HH, Langen KJ. Isomers of 4-[18F]fluoroproline: radiosynthesis, biological evaluation and results in humans using PET. Curr Radiopharm. 2014;7:123–32.

    Article  CAS  PubMed  Google Scholar 

  556. Goodman MM, Yu W, Jarkas N. Synthesis and biological properties of radiohalogenated α,α-disubstituted amino acids for PET and SPECT imaging of amino acid transporters (AATs). J Label Compd Radiopharm. 2018;61:272–90.

    Article  CAS  Google Scholar 

  557. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, Camp VM, Stabin M, Votaw D, Goodman MM. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40:331–8.

    CAS  PubMed  Google Scholar 

  558. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37:1512–36.

    Article  PubMed  Google Scholar 

  559. Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol. 2014;10:708–22.

    Article  PubMed  Google Scholar 

  560. Lussey-Lepoutre C, Hindié E, Montravers F, Detour J, Ribeiro MJS, Taïeb D, Imperiale A. The current role of 18F-FDOPA PET for neuroendocrine tumor imaging. Med Nucl. 2016;40:20–30.

    Google Scholar 

  561. Inoue T, Shibasaki T, Oriuchi N, Aoyagi K, Tomiyoshi K, Amano S, Mikuni M, Itsurou I, Aoki J, Endo K. 18F α-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40:399–405.

    CAS  PubMed  Google Scholar 

  562. Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stöcklin G, Heiss W-D. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med. 1991;32:1338–46.

    CAS  PubMed  Google Scholar 

  563. Wahl LM, Chen JJ, Thompson M, Chirakal R, Nahmias C. The time course of metabolites in human plasma after 6-[18F]fluoro-L-m-tyrosine administration. Eur J Nucl Med. 1999;26:1407–12.

    Article  CAS  PubMed  Google Scholar 

  564. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;46:5276–81.

    CAS  PubMed  Google Scholar 

  565. Haberkorn U, Oberdorfer F, Gebert J, Morr I, Haack K, Weber K, Lindauer M, vanKaick G, Schackert HK. Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine. J Nucl Med. 1996;37:87–94.

    CAS  PubMed  Google Scholar 

  566. Alrabiah FA, Sacks SL. New antiherpesvirus agents – their targets and therapeutic potential. Drugs. 1996;52:17–32.

    Article  CAS  PubMed  Google Scholar 

  567. Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Imaging gene expression: principles and assays. J Nucl Cardiol. 1999;6:219–33.

    Article  CAS  PubMed  Google Scholar 

  568. Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics. 2012;2:374–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  569. Ray P, Bauer E, Lyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med. 2001;31:312–20.

    Article  CAS  PubMed  Google Scholar 

  570. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, Safer M, Beattie B, DiResta G, Daghighian F, Augensen F, Koutcher J, Zweit J, Humm J, Larson SM, Finn R, Blasberg R. Imaging Herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 1998;58:4333–41.

    CAS  PubMed  Google Scholar 

  571. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998;25:175–80.

    Article  CAS  PubMed  Google Scholar 

  572. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, Toyokuni T, Phelps ME, Herschman HR, Gambhir SS. 8-[18F]fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med. 2001;42:96–105.

    CAS  PubMed  Google Scholar 

  573. Alauddin MM, Gelovani JG. Radiolabeled nucleoside analogues for PET imaging of HSV1-tk gene expression. Curr Top Med Chem. 2010;10:1617–32.

    Article  CAS  PubMed  Google Scholar 

  574. Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET tracers for Imaging Proteinopathies. Semin Nucl Med. 2017;47:553–75.

    Article  PubMed  PubMed Central  Google Scholar 

  575. Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer’s disease treatment. Expert Opin Biol Ther. 2007;7:1853–67.

    Article  CAS  PubMed  Google Scholar 

  576. Trojanowski JQ, Shin RW, Schmidt ML, Lee VMY. Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging. 1995;16:335–40.

    Article  CAS  PubMed  Google Scholar 

  577. George N, Gean E, Nandi A, Brašić JR, Wong DF. Radiotracers used to image the brains of patients with Alzheimer’s disease imaging of the human brain in health and disease. Boston, MA: Academic; 2014. p. 407–16.

    Book  Google Scholar 

  578. Oukoloff K, Cieslikiewicz-Bouet M, Chao S, Bran-quinho ED, Bouteiller C, Jean L, Renard PY. PET and SPECT radiotracers for Alzheimer’s disease. Curr Med Chem. 2015;22:3278–304.

    Article  CAS  PubMed  Google Scholar 

  579. Villemagne VL, Furumoto S, Fodero-Tavoletti M, Harada R, Mulligan RS, Kudo Y, Masters CL, Yanai K, Rowe CC, Okamura N. The challenges of tau imaging. Future Neurol. 2012;7:409–21.

    Article  CAS  Google Scholar 

  580. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:Article no. RC189.

    Article  PubMed  Google Scholar 

  581. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang S-C. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10:24–35.

    Article  PubMed  Google Scholar 

  582. Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  CAS  PubMed  Google Scholar 

  583. Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y. Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract. 2012;66:185–98.

    Article  CAS  PubMed  Google Scholar 

  584. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, Tochon-Danguy H, Chan G, Berlangieri SU, Jones G, Dickinson-Rowe KL, Kung HP, Zhang W, Kung MP, Skovronsky D, Dyrks T, Holl G, Krause S, Friebe M, Lehman L, Lindemann S, Dinkelborg LM, Masters CL, Villemagne VL. Imaging of amyloid b in Alzheimer’s disease with 18F-BAY94-9172 a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35.

    Article  CAS  PubMed  Google Scholar 

  585. Martinez G, Vernooij RWM, Padilla PF, Zamora J, Cosp XB, Flicker L. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;11:CD012216.

    PubMed  Google Scholar 

  586. Martinez G, Vernooij RWM, Padilla PF, Zamora J, Flicker L, Cosp XB. 18F PET with florbetaben for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;11:CD012883.

    PubMed  Google Scholar 

  587. Cselényi Z, Jönhagen ME, Forsberg A, Halldin C, Julin P, Schou M, Johnström P, Varnäs K, Svensson S, Farde L. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med. 2012;53:415–24.

    Article  PubMed  CAS  Google Scholar 

  588. Hostetler ED, Sanabria-Bohorquez S, Fan H, Zeng ZZ, Gammage L, Miller P, O’Malley S, Connolly B, Mulhearn J, Harrison ST, Wolkenberg SE, Barrow JC, Williams DL, Hargreaves RJ, Sur C, Cook JJ. [18F]Fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey. Nucl Med Biol. 2011;38:1193–203.

    Article  CAS  PubMed  Google Scholar 

  589. Ariza M, Kolb HC, Moechars D, Rombouts F, Andrés JI. Tau positron emission tomography (PET) imaging: past, present, and future. J Med Chem. 2015;58:4365–82.

    Article  CAS  PubMed  Google Scholar 

  590. Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, Cao DN, Rigopoulos A, Cartwright GA, O’Keefe G, Gong S, Adlard PA, Barnham KJ, Rowe CC, Masters CL, Kudo Y, Cappai R, Yanai K, Villemagne VL. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134:1089–100.

    Article  PubMed  Google Scholar 

  591. Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, Mulligan RS, Villemagne VL, Akatsu H, Yamamoto T, Arai H, Iwata R, Yanai K, Kudo Y. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7.

    Article  CAS  PubMed  Google Scholar 

  592. Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, Shiomi S, Muto M, Ito T, Furutsuka K, Yamasaki T, Yui JJ, Xie L, Ono M, Hatori A, Nemoto K, Suhara T, Higuchi M, Zhang MR. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55:1532–8.

    Article  CAS  PubMed  Google Scholar 

  593. Shidahara M, Watabe H, Tashiro M, Okamura N, Furumoto S, Watanuki S, Furukawa K, Arakawa Y, Funaki Y, Iwata R, Gonda K, Kudo Y, Arai H, Ishiwata K, Yanai K. Quantitative kinetic analysis of PET amyloid imaging agents [11C]BF227 and [18F]FACT in human brain. Nucl Med Biol. 2015;42:734–44.

    Article  CAS  PubMed  Google Scholar 

  594. Wooten DW, Guehl NJ, Verwer EE, Shoup TM, Yokell DL, Zubcevik N, Vasdev N, Zafonte RD, Johnson KA, Fakhri GE, Normandin MD. Pharmacokinetic evaluation of the tau PET radiotracer 18F-T807 (18F-AV-1451) in human subjects. J Nucl Med. 2017;58:484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  595. Declercq L, Celen S, Lecina J, Ahamed M, Tousseyn T, Moechars D, Alcazar J, Ariza M, Fierens K, Bottelbergs A, Mariën J, Vandenberghe R, Andres IJ, Van Laere K, Verbruggen A, Bormans G. Comparison of new tau PET-tracer candidates with [18F]T808 and [18F]T807. Mol Imaging. 2016;15:1–15.

    Article  CAS  Google Scholar 

  596. Bredesen DE. Genetic control of neural cell apoptosis. Perspect Dev Neurobiol. 1996;3:101–9.

    CAS  PubMed  Google Scholar 

  597. Faust A, Hermann S, Wagner S, Haufe G, Schober O, Schäfers M, Kopka K. Molecular imaging of apoptosis in vivo with scintigraphic and optical biomarkers – a status report. Anti Cancer Agents Med Chem. 2009;9:968–85.

    Article  CAS  Google Scholar 

  598. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  599. Elmenhorst D, Bier D, Holschbach M, Bauer A. Imaging of adenosine receptors PET and SPECT of neurobiological systems. New York, NY: Springer; 2014. p. 181–98.

    Book  Google Scholar 

  600. Boschi S, Lodi F, Boschi L, Nanni C, Chondrogiannis S, Colletti PM, Rubello D, Fanti S. 11C-meta-hydroxyephedrine a promising PET radiopharmaceutical for imaging the sympathetic nervous system. Clin Nucl Med. 2015;40:E96–E103.

    Article  PubMed  Google Scholar 

  601. Andersson JD, Halldin C. PET radioligands targeting the brain GABAA/benzodiazepine receptor complex. J Label Compd Radiopharm. 2013;56:196–206.

    Article  CAS  Google Scholar 

  602. Ahamed M, Verbruggen A, Bormans G. Synthetic strategies for radioligands for in vivo imaging of brain cannabinoid type-1 receptors. J Label Compd Radiopharm. 2013;56:207–14.

    Article  CAS  Google Scholar 

  603. Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50:1915–8.

    Article  CAS  PubMed  Google Scholar 

  604. Becker G, Bahri MA, Michel A, Hustadt F, Garraux G, Luxen A, Lemaire C, Plenevaux A. Comparative assessment of 6-[18F]fluoro-L-m-tyrosine and 6-[18F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson’s disease rat model. J Neurochem. 2017;141:626–35.

    Article  CAS  PubMed  Google Scholar 

  605. Prante O, Maschauer S, Banerjee A. Radioligands for the dopamine receptor subtypes. J Label Compd Radiopharm. 2013;56:130–48.

    Article  CAS  Google Scholar 

  606. Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and 18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Label Compd Radiopharm. 2013;56:120–9.

    Article  CAS  Google Scholar 

  607. Mu L, Schubiger PA, Ametamey SM. Radioligands for the PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem. 2010;10:1558–68.

    Article  CAS  PubMed  Google Scholar 

  608. Sobrio F. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors. J Label Compd Radiopharm. 2013;56:180–6.

    Article  CAS  Google Scholar 

  609. Sephton SM. Positron emission tomography of metabotropic glutamate receptors. In: Parrot S, Denoroy L, editors. Biochemical approaches for glutamatergic neurotransmission. New York, NY: Springer; 2018. p. 51–82.

    Chapter  Google Scholar 

  610. Horti AG, Kuwabara H, Holt DP, Dannals RF, Wong DF. Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors. J Label Compd Radiopharm. 2013;56:159–66.

    Article  CAS  Google Scholar 

  611. Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker G-A, Rullmann M, Patt M, Luthardt J, Wagenknecht G, Hoepping A, Smits R, Franke A, Sattler B, Tiepolt S, Fischer S, Deuther-Conrad W, Hegerl U, Barthel H, Schönknecht P, Brust P. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain. 2018;141:1840–54.

    Article  PubMed  PubMed Central  Google Scholar 

  612. Pike VW. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr Med Chem. 2016;23:1818–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  613. McGinnity CJ, Hammers A, Riaño Barros DA, Luthra SK, Jones PA, Trigg W, Micallef C, Symms MR, Brooks DJ, Koepp MJ, Duncan JS. Initial evaluation of 18F-GE-179, a putative PET tracer for activated N-methyl d-aspartate receptors. J Nucl Med. 2014;55:423–30.

    Article  CAS  PubMed  Google Scholar 

  614. Lohith TG, Zoghbi SS, Morse CL, Araneta MDF, Barth VN, Goebl NA, Tauscher JT, Pike VW, Innis RB, Fujita M. Retest imaging of [11C]NOP-1A binding to nociceptin/orphanin FQ peptide (NOP) receptors in the brain of healthy humans. NeuroImage. 2014;87:89–95.

    Article  CAS  PubMed  Google Scholar 

  615. Dannals RF. Positron emission tomography radioligands for the opioid system. J Label Compd Radiopharm. 2013;56:187–95.

    Article  CAS  Google Scholar 

  616. Zimmer L, Le Bars D. Current status of positron emission tomography radiotracers for serotonin receptors in humans. J Label Compd Radiopharm. 2013;56:105–13.

    Article  CAS  Google Scholar 

  617. Banister SD, Manoli M, Kassiou M. The development of radiotracers for imaging sigma (σ) receptors in the central nervous system (CNS) using positron emission tomography (PET). J Label Compd Radiopharm. 2013;56:215–24.

    Article  CAS  Google Scholar 

  618. Riss PJ, Stockhofe K, Roesch F. Tropane-derived 11C-labelled and 18F-labelled DAT ligands. J Label Compd Radiopharm. 2013;56:149–58.

    Article  CAS  Google Scholar 

  619. Passchier J, Gunn RN, Van Waarde A. Imaging type 1 glycine transporters in the CNS using positron emission tomography. In: de Vries EFJ, Luiten PGM, Otte A, editors. PET and SPECT of neurobiological systems. New York, NY: Springer; 2014. p. 321–30.

    Chapter  Google Scholar 

  620. Takano A, Gulyás B, Varrone A, Halldin C. Comparative evaluations of norepinephrine transporter radioligands with reference tissue models in rhesus monkeys: (S,S)-[18F]FMeNER-D2 and (S,S)-[11C]MeNER. Eur J Nucl Med Mol Imaging. 2009;36:1885.

    Article  CAS  PubMed  Google Scholar 

  621. Kilbourn MR. Small molecule PET tracers for transporter imaging. Semin Nucl Med. 2017;47:536–52.

    Article  PubMed  Google Scholar 

  622. Stehouwer JS, Goodman MM. 11C and 18F PET radioligands for the serotonin transporter (SERT). J Label Compd Radiopharm. 2013;56:114–9.

    Article  CAS  Google Scholar 

  623. Kilbourn MR. Radioligands for imaging vesicular monoamine transporters. In: Dierckx RAJO, et al., editors. PET and SPECT of neurobiological systems. Berlin: Springer; 2014. p. 765–90.

    Chapter  Google Scholar 

  624. Aghourian M, Legault-Denis C, Soucy JP, Rosa-Neto P, Gauthier S, Kostikov A, Gravel P, Bedard MA. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol Psychiatry. 2017;22:1531–8.

    Article  CAS  PubMed  Google Scholar 

  625. Damont A, Roeda D, Dollé F. The potential of carbon-11 and fluorine-18 chemistry: illustration through the development of positron emission tomography radioligands targeting the translocator protein 18 kDa. J Label Compd Radiopharm. 2013;56:96–104.

    Article  CAS  Google Scholar 

  626. Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, Trigg W, Brooks DJ, Hinz R, Edison P. Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med. 2016;57:1753–9.

    Article  CAS  PubMed  Google Scholar 

  627. Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, Strafella AP. Microglial activation in Parkinson’s disease using [18F]-FEPPA. J Neuroinflammation. 2017;14:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  628. Reubi JC, Laissue J, Krenning E, Lamberts SWJ. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J Steroid Biochem Mol Biol. 1992;43:27–35.

    Article  CAS  PubMed  Google Scholar 

  629. Virgolini I, Pangerl T, Bischof C, Smith-Jones P, Peck-Radosavljevic M. Somatostatin receptor subtype expression in human tissues: a prediction for diagnosis and treatment of cancer? Eur J Clin Investig. 1997;27:645–7.

    Article  CAS  Google Scholar 

  630. Breeman WAP, de Blois E, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. 68Ga-labeled DOTA-peptides and 68Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41:314–21.

    Article  PubMed  Google Scholar 

  631. Schottelius M, Wester H-J. Molecular imaging targeting peptide receptors. Methods. 2009;48:161–77.

    Article  CAS  PubMed  Google Scholar 

  632. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA. Breast cancer: PET imaging of estrogen receptors. Radiology. 1988;169:45–8.

    Article  CAS  PubMed  Google Scholar 

  633. Hostetler ED, Jonson SD, Welch MJ, Katzenellenbogen JA. Synthesis of 2-[18F]fluoroestradiol, a potential diagnostic imaging agent for breast cancer: strategies to achieve nucleophilic substitution of an electron-rich aromatic ring with [18F]F−. J Org Chem. 1999;64:178–85.

    Article  CAS  PubMed  Google Scholar 

  634. Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJB. Clinical production, stability studies and PET imaging with 16-α-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci. 2007;10:256s–65s.

    Article  CAS  PubMed  Google Scholar 

  635. Dehdashti F, Laforest R, Gao F, Aft RL, Dence CS, Zhou D, Shoghi KI, Siegel BA, Katzenellenbogen JA, Welch MJ. Assessment of progesterone receptors in breast carcinoma by PET with 21-18F-fluoro-16α,17α-[(R)-(1′-α-furylmethylidene) dioxy]-19-norpregn-4-ene-3,20-dione. J Nucl Med. 2012;53:363–70.

    Article  CAS  PubMed  Google Scholar 

  636. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91.

    Article  PubMed  Google Scholar 

  637. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin avb3 expression in man. Clin Cancer Res. 2006;12:3942–9.

    Article  CAS  PubMed  Google Scholar 

  638. Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R, Chang E, Liu SL, Shen B, Chin FT, Chen XY, Gambhir SS. Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology. 2011;260:182–91.

    Article  PubMed  PubMed Central  Google Scholar 

  639. Mena E, Owenius R, Turkbey B, Sherry R, Bratslavsky G, Macholl S, Miller MP, Somer EJ, Lindenberg L, Adler S, Shih J, Choyke P, Kurdziel K. [18F]Fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ3 and αvβ5 integrins. Eur J Nucl Med Mol Imaging. 2014;41:1879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  640. Backer MV, Backer JM. Imaging key biomarkers of tumor angiogenesis. Theranostics. 2012;2:502–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  641. Cai H, Conti PS. RGD-based PET tracers for imaging receptor integrin αvβ3 expression. J Label Compd Radiopharm. 2013;56:264–79.

    Article  CAS  Google Scholar 

  642. Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110-111:38–51.

    Article  CAS  PubMed  Google Scholar 

  643. Rylova SN, Barnucz E, Fani M, Braun F, Werner M, Lassmann S, Maecke HR, Weber WA. Does imaging αvβ3 integrin expression with PET detect changes in angiogenesis during bevacizumab therapy? J Nucl Med. 2014;55:1878–84.

    Article  CAS  PubMed  Google Scholar 

  644. Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, Eisenberger M, Carducci M, Fan H, Dannals RF, Chen Y, Mease RC, Szabo Z, Pomper MG, Cho SY. PSMA-based [18F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol. 2016;18:411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  645. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, Kesch C, Tolstov Y, Singer S, Grabe N, Duensing S, Schafer M, Neels OC, Mier W, Haberkorn U, Kopka K, Kratochwil C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.

    Article  CAS  PubMed  Google Scholar 

  646. Zinnhardt B, Pigeon H, Thézé B, Viel T, Wachsmuth L, Fricke IB, Schelhaas S, Honold L, Schwegmann K, Wagner S, Faust A, Faber C, Kuhlmann MT, Hermann S, Schäfers M, Winkeler A, Jacobs AH. Combined PET imaging of the inflammatory tumor microenvironment identifies margins of unique radiotracer uptake. Cancer Res. 2017;77:1831–41.

    Article  CAS  PubMed  Google Scholar 

  647. Hughes AJ. Clinicopathological aspects of Parkinson’s disease. Eur Neurol. 1997;38:13–20.

    Article  PubMed  Google Scholar 

  648. Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES. Cerebral metabolism of 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine in the primate. J Neurochem. 1987;48:1077–82.

    Article  CAS  PubMed  Google Scholar 

  649. DeJesus OT, Endres CJ, Shelton SE, Nickles RJ, Holden JE. Evaluation of fluorinated m-tyrosine analogs as PET imaging agents of dopamine nerve terminals: comparison with 6-fluorodopa. J Nucl Med. 1997;38:630–6.

    CAS  PubMed  Google Scholar 

  650. Wong D, Wagner H, Tune L, Dannals R, Pearlson G, Links J, Tamminga C, Broussolle E, Ravert H, Wilson A, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 1986;234:1558–63.

    Article  CAS  PubMed  Google Scholar 

  651. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci U S A. 1985;82:3863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  652. Albrecht DS, Granziera C, Hooker JM, Loggia ML. In vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7:470–83.

    Article  CAS  PubMed  Google Scholar 

  653. Kersemans K, Van Laeken N, De Vos F. Radiochemistry devoted to the production of monoamine oxidase (MAO-A and MAO-B) ligands for brain imaging with positron emission tomography. J Label Compd Radiopharm. 2013;56:78–88.

    Article  CAS  Google Scholar 

  654. Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 2005;6:112–7.

    Article  PubMed  Google Scholar 

  655. Verburg FA, Heinzel A, Hänscheid H, Mottaghy FM, Luster M, Giovanella L. Nothing new under the nuclear sun: towards 80 years of theranostics in nuclear medicine. Eur J Nucl Med Mol Imaging. 2014;41:199–201.

    Article  PubMed  Google Scholar 

  656. Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. P T. 2010;35:560–76.

    PubMed  PubMed Central  Google Scholar 

  657. Funkhouser J. Reinventing pharma: the theranostic revolution. Curr Drug Discov. 2002;2002:17–9.

    Google Scholar 

  658. Jeelani S, Jagat Reddy R, Maheswaran T, Asokan G, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci. 2014;6:6–8.

    Article  Google Scholar 

  659. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, Shih M-C, Shimada N, Chen S, Salgia R, Appelbaum DE, Suzuki K, Chen C-T, Pu Y. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.

    Article  CAS  PubMed  Google Scholar 

  660. Velikyan I. Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics. 2012;2:424–6.

    Article  PubMed  PubMed Central  Google Scholar 

  661. Teng F-F, Meng X, Sun X-D, Yu J-M. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine. 2013;8:3703–13.

    PubMed  PubMed Central  Google Scholar 

  662. Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician. 2008;77:311–9.

    PubMed  Google Scholar 

  663. Jadvar H, Chen X, Cai W, Mahmood U. Radiotheranostics in cancer diagnosis and management. Radiology. 2018;286:388–400.

    Article  PubMed  Google Scholar 

  664. Fahey FH, Grant FD, Thrall JH. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  665. Hertz B. Dr. Saul Hertz (1905–1950) discovers the medical uses of radioactive iodine: the first targeted cancer therapy thyroid cancer – advances in diagnosis and therapy. London: IntechOpen; 2016.

    Google Scholar 

  666. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132:838–47.

    Article  CAS  PubMed  Google Scholar 

  667. Volkert WA, Huffman TJ. Therapeutic radiopharmaceuticals. Chem Rev. 1999;99:2269–92.

    Article  CAS  PubMed  Google Scholar 

  668. Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJG, Tennvall J, Bombardieri E. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941.

    Article  CAS  PubMed  Google Scholar 

  669. Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev. 2004;24:357–97.

    Article  CAS  PubMed  Google Scholar 

  670. Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted radionuclide therapy: practical applications and future prospects. Biomark Cancer. 2016;8:35–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  671. Dash A, Pillai MRA, Knapp FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49:85–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  673. Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14:203.

    Article  CAS  PubMed  Google Scholar 

  674. Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2012;2:1040–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  675. Santos-Oliveira R, Smith SW, Carneiro-Leão AMA. Radiopharmaceuticals drug interactions: a critical review. An Acad Bras Cienc. 2008;80:665–75.

    Article  CAS  PubMed  Google Scholar 

  676. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, Tennvall J. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  677. Banerjee SR, Pomper MG. Clinical applications of gallium-68. Appl Radiat Isot. 2013;76:2–13.

    Article  CAS  PubMed  Google Scholar 

  678. Das T, Banerjee S. Theranostic applications of lutetium-177 in radionuclide therapy. Curr Radiopharm. 2016;9:94–101.

    Article  CAS  PubMed  Google Scholar 

  679. Elgqvist J, Frost S, Pouget J-P, Albertsson P. The potential and hurdles of targeted alpha therapy – clinical trials and beyond. Front Oncol. 2013;3:324.

    Google Scholar 

  680. Goffredo V, Paradiso A, Ranieri G, Gadaleta CD. Yttrium-90 (90Y) in the principal radionuclide therapies: an efficacy correlation between peptide receptor radionuclide therapy, radioimmunotherapy and transarterial radioembolization therapy. Ten years of experience (1999–2009). Crit Rev Oncol Hematol. 2011;80:393–410.

    Article  PubMed  Google Scholar 

  681. Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev. 2008;60:1347–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  682. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52:166–73.

    CAS  PubMed  Google Scholar 

  683. Milenic DE, Baidoo KE, Kim Y-S, Barkley R, Brechbiel MW. Comparative studies on the therapeutic benefit of targeted [small alpha]-particle radiation therapy for the treatment of disseminated intraperitoneal disease. Dalton Trans. 2017;46:14591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  684. Pool SE, Krenning EP, Koning GA, van Eijck CHJ, Teunissen JJM, Kam B, Valkema R, Kwekkeboom DJ, de Jong M. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med. 2010;40:209–18.

    Article  PubMed  Google Scholar 

  685. Bison SM, Konijnenberg MW, Melis M, Pool SE, Bernsen MR, Teunissen JJM, Kwekkeboom DJ, de Jong M. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin Transl Imaging. 2014;2:55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  686. Keskin O, Yalcin S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther. 2013;6:471–83.

    CAS  Google Scholar 

  687. Heck MM, Schwaiger S, Knorr K, Retz M, Maurer T, Janssen F, D’Alessandria C, Wester H-J, Gschwend JE, Schwaiger M, Tauber R, Eiber M. Clinical experience with 100 consecutive patients treated with 177Lu-labeled PSMA-I&T radioligand therapy for metastatic castration-resistant prostate cancer. J Clin Oncol. 2018;36:206.

    Article  Google Scholar 

  688. Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SAMW, Rosenbaum-Krumme S, Bockisch A, Gotthardt M, Rijpkema M, Boerman OC. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015;5:1388–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  689. Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, Essler M, Baum RP, Kulkarni HR, Schmidt M, Drzezga A, Bartenstein P, Pfestroff A, Luster M, Lützen U, Marx M, Prasad V, Brenner W, Heinzel A, Mottaghy FM, Ruf J, Meyer PT, Heuschkel M, Eveslage M, Bögemann M, Fendler WP, Krause BJ. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.

    Article  CAS  PubMed  Google Scholar 

  690. Nock BA, Kaloudi A, Lymperis E, Giarika A, Kulkarni HR, Klette I, Singh A, Krenning EP, de Jong M, Maina T, Baum RP. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med. 2017;58:75–80.

    Article  CAS  PubMed  Google Scholar 

  691. Stoykow C, Erbes T, Maecke HR, Bulla S, Bartholoma M, Mayer S, Drendel V, Bronsert P, Werner M, Gitsch G, Weber WA, Stickeler E, Meyer PT. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist 68Ga-RM2 and PET. Theranostics. 2016;6:1641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  692. Kruljac I, Pape UF. “Neuroendocrine carcinomas” revisited – a 2017 update and future perspectives. Endocr Oncol Metab. 2017;3:37–42.

    Article  Google Scholar 

  693. Klöppel G. Neuroendocrine neoplasms: dichotomy, origin and classifications. Visc Med. 2017;33:324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  694. Jann H, Roll S, Couvelard A, Hentic O, Pavel M, Müller-Nordhorn J, Koch M, Röcken C, Rindi G, Ruszniewski P, Wiedenmann B, Pape U-F. Neuroendocrine tumors of midgut and hindgut origin: tumor-node-metastasis classification determines clinical outcome. Cancer. 2011;117:3332–41.

    Article  PubMed  Google Scholar 

  695. Klöppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2011;18:S1–S16.

    Article  PubMed  Google Scholar 

  696. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T, Yao JC. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  697. Reubi J, Waser B, Schaer J-C, Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28:836–46.

    Article  CAS  PubMed  Google Scholar 

  698. Reubi JC, Maecke HR. Peptide-based probes for cancer imaging. J Nucl Med. 2008;49:1735–8.

    Article  CAS  PubMed  Google Scholar 

  699. Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PPA, O’Carroll AM, Patel YC, Schonbrunn A, Taylor JE, Reisine T. Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci. 1995;16:86–8.

    Article  CAS  PubMed  Google Scholar 

  700. Csaba Z, Peineau S, Dournaud P. Molecular mechanisms of somatostatin receptor trafficking. J Mol Endocrinol. 2012;48:R1–R12.

    Article  CAS  PubMed  Google Scholar 

  701. Nilsson O, Kölby L, Wängberg B, Wigander A, Billig H, William-Olsson L, Fjälling M, Forssell-Aronsson E, Ahlman H. Comparative studies on the expression of somatostatin receptor subtypes, outcome of octreotide scintigraphy and response to octreotide treatment in patients with carcinoid tumours. Br J Cancer. 1998;77:632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  702. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–9.

    Article  CAS  PubMed  Google Scholar 

  703. Burgus R, Ling N, Butcher M, Guillemin R. Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. Proc Natl Acad Sci U S A. 1973;70:684–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  704. Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr Rev. 1995;16:427–42.

    CAS  PubMed  Google Scholar 

  705. Panetta R, Greenwood MT, Warszynska A, Demchyshyn LL, Day R, Niznik HB, Srikant CB, Patel YC. Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin-28. Mol Pharmacol. 1994;45:417–27.

    CAS  PubMed  Google Scholar 

  706. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.

    Article  CAS  PubMed  Google Scholar 

  707. Reubi JC, Schaer J-C, Laissue JA, Waser B. Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels. Metabolism. 1996;45:39–41.

    Article  CAS  PubMed  Google Scholar 

  708. Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52:42S–55S.

    Article  CAS  PubMed  Google Scholar 

  709. Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol. 2013;34:228–52.

    Article  CAS  PubMed  Google Scholar 

  710. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427.

    Article  CAS  PubMed  Google Scholar 

  711. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  CAS  PubMed  Google Scholar 

  712. Öberg K. Molecular imaging radiotherapy: theranostics for personalized patient management of neuroendocrine tumors (NETs). Theranostics. 2012;2:448–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  713. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, Papathanasiou ND, Pepe G, Oyen W, De Cristoforo C, Chiti A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37:2004–10.

    Article  PubMed  Google Scholar 

  714. Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, Caplin ME. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54:364–72.

    Article  CAS  PubMed  Google Scholar 

  715. Kam BLR, Teunissen JJM, Krenning EP, de Herder WW, Khan S, van Vliet EI, Kwekkeboom DJ. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.

    Article  CAS  PubMed Central  Google Scholar 

  716. Marincek N, Jörg A-C, Brunner P, Schindler C, Koller MT, Rochlitz C, Müller-Brand J, Maecke HR, Briel M, Walter MA. Somatostatin-based radiotherapy with [90Y-DOTA]-TOC in neuroendocrine tumors: long-term outcome of a phase I dose escalation study. J Transl Med. 2013;11:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  717. Kratochwil C, Bruchertseifer F, Giesel F, Apostolidis C, Haberkorn U, Morgenstern A. Ac-225-DOTATOC – an empiric dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors. J Nucl Med. 2015;56:1232.

    Article  CAS  Google Scholar 

  718. Kratochwil C, Giesel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, Murphy K, Haberkorn U, Morgenstern A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41:2106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  719. Helisch A, Förster GJ, Reber H, Buchholz H-G, Arnold R, Göke B, Weber MM, Wiedenmann B, Pauwels S, Haus U, Bouterfa H, Bartenstein P. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31:1386–92.

    Article  CAS  PubMed  Google Scholar 

  720. Singh A, van der Meulen NP, Müller C, Klette I, Kulkarni HR, Türler A, Schibli R, Baum RP. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study. Cancer Biother Radiopharm. 2017;32:124–32.

    Article  CAS  PubMed  Google Scholar 

  721. Baum RP, Kulkarni HR. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy – the bad Berka experience. Theranostics. 2012;2:437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  722. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, O’Dorisio MS, O’Dorisiol TM, Howe JR, Cremonesi M, Kwekkeboom DJ. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  723. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, Bartolomei M, Lombardo D, Ferrari ME, Sansovini M, Chinol M, Paganelli G. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.

    Article  CAS  PubMed  Google Scholar 

  724. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, O’Dorisio TM, Valkema R, Bodei L, Chinol M, Maecke HR, Krenning EP. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46:62S–6S.

    CAS  PubMed  Google Scholar 

  725. Strosberg JR, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, Mittra E, Kunz PL, Kulke MH, Jacene H, Bushnell D, O’Dorisio TM, Baum RP, Kulkarni HR, Caplin M, Lebtahi R, Hobday T, Delpassand E, Van Cutsem E, Benson A, Srirajaskanthan R, Pavel M, Mora J, Berlin J, Grande E, Reed N, Seregni E, Öberg K, Lopera Sierra M, Santoro P, Thevenet T, Erion JL, Ruszniewski P, Kwekkeboom D, Krenning E. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  726. Bodei L, Kidd M, Paganelli G, Grana CM, Drozdov I, Cremonesi M, Lepensky C, Kwekkeboom DJ, Baum RP, Krenning EP, Modlin IM. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

    Article  CAS  PubMed  Google Scholar 

  727. Kwekkeboom DJ, Krenning EP. Peptide receptor radionuclide therapy in the treatment of neuroendocrine tumors. Hematol Oncol Clin North Am. 2016;30:179–91.

    Article  PubMed  Google Scholar 

  728. Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, Mäcke HR, Rochlitz C, Müller-Brand J, Walter MA. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23.

    Article  CAS  PubMed  Google Scholar 

  729. Sabet A, Ezziddin K, Pape U-F, Reichman K, Haslerud T, Ahmadzadehfar H, Biersack H-J, Nagarajah J, Ezziddin S. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. Eur J Nucl Med Mol Imaging. 2014;41:505–10.

    Article  CAS  PubMed  Google Scholar 

  730. Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Mäcke HR, Reubi JC. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  731. Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, Fischer R, Rivier JEF, Reubi JC, Maecke HR, Weber WA. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55:1248–52.

    Article  CAS  PubMed  Google Scholar 

  732. Fani M, Kolenc Peitl P, Velikyan I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals. 2017;10:30.

    Article  PubMed Central  CAS  Google Scholar 

  733. Ahmadzadehfar H. Targeted therapy for metastatic prostate cancer with radionuclides prostate cancer. London: IntechOpen; 2016.

    Google Scholar 

  734. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin Donald M, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:E359–86.

    Article  PubMed  CAS  Google Scholar 

  735. Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, Chen Y, Yang X, Cho SY, Nimmagadda S, Pomper MG. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging. 2015;59:241–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  736. O’Keefe DS, Bacich DJ, Heston WDW. Prostate specific membrane antigen. In: Chung L, Issacs W, Simons J, editors. Prostate cancer, biology, genetics, and the new therapeutics. Totowa, NJ: Humana; 2001. p. 307–26.

    Google Scholar 

  737. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  738. Dumas F, Gala Jean L, Berteau P, Brasseur F, Eschwège P, Paradis V, Lacour B, Philippe M, Loric S. Molecular expression of PSMA mRNA and protein in primary renal tumors. Int J Cancer. 1999;80:799–803.

    Article  CAS  PubMed  Google Scholar 

  739. Gala J-L, Loric S, Guiot Y, Denmeade SR, Gady A, Brasseur F, Heusterspreute M, Eschwège P, De Nayer P, Van Cangh P, Tombal B. Expression of prostate-specific membrane antigen in transitional cell carcinoma of the bladder: prognostic value? Clin Cancer Res. 2000;6:4049–54.

    CAS  PubMed  Google Scholar 

  740. Chang SS, Reuter VE, Heston WDW, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–8.

    CAS  PubMed  Google Scholar 

  741. Haffner MC, Kronberger IE, Ross JS, Sheehan CE, Zitt M, Mühlmann G, Öfner D, Zelger B, Ensinger C, Yang XJ, Geley S, Margreiter R, Bander NH. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum Pathol. 2009;40:1754–61.

    Article  CAS  PubMed  Google Scholar 

  742. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43:1809–18.

    CAS  PubMed  Google Scholar 

  743. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    CAS  PubMed  Google Scholar 

  744. Ellis RJ, Kaminsky DA, Zhou EH, Fu P, Chen W-D, Brelin A, Faulhaber PF, Bodner D. Ten-year outcomes: the clinical utility of single photon emission computed tomography/computed tomography capromab pendetide (prostascint) in a cohort diagnosed with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2011;81:29–34.

    Article  PubMed  Google Scholar 

  745. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer11A complete list of the ProstaScint imaging centers is provided in the appendix. Urology. 2000;56:988–93.

    Article  CAS  PubMed  Google Scholar 

  746. Taneja SS. ProstaScint® scan: contemporary use in clinical practice. Rev Urol. 2004;6:S19–28.

    PubMed  PubMed Central  Google Scholar 

  747. Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, Haberkorn U, Kopka K, Eder M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.

    Article  CAS  PubMed  Google Scholar 

  748. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. 2-(3-(1-Carboxy-5-(6-[18F]fluoro-pyridine-3-carbonyl)-amino-pentyl)-U reido)-pentanedioic acid, [18F] DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  749. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, Endres CJ, Dannals RF, Sgouros G, Lodge M, Eisenberger MA, Rodriguez R, Carducci MA, Rojas C, Slusher BS, Kozikowski AP, Pomper MG. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.

    Article  CAS  PubMed  Google Scholar 

  750. Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, Haberkorn U, Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  751. Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, Zimmerman CN, Barrett JA, Eckelman WC, Pomper MG, Joyal JL, Babich JW. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69:6932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  752. Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, Zimmerman CN, Kozikowski AP, Barrett JA, Eckelman WC, Babich JW. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.

    Article  CAS  PubMed  Google Scholar 

  753. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, Antonarakis ES, Fan H, Dannals RF, Chen Y, Mease RC, Vranesic M, Bhatnagar A, Sgouros G, Cho SY, Pomper MG. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  754. Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, Kulkarni HR, Lassmann M, Klette I, Eiber M, Schwaiger M, Wester H-J. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56:1169–76.

    Article  CAS  PubMed  Google Scholar 

  755. Langton-Webster B, Berkman C, Slater J, Jivan S, Neumann K, Whalley E, Ketteridge P, Behr S, Aggarwal R, VanBrocklin H. Development of a novel PSMA-targeted PET imaging agent, CTT1057, for use in prostate cancer. J Nucl Med. 2016;57:467.

    Article  CAS  Google Scholar 

  756. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.

    Article  CAS  PubMed  Google Scholar 

  757. Kampmeier F, Williams JD, Maher J, Mullen GE, Blower PJ. Design and preclinical evaluation of a 99mTc-labelled diabody of mAb J591 for SPECT imaging of prostate-specific membrane antigen (PSMA). EJNMMI Res. 2014;4:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  758. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522–31.

    Article  CAS  PubMed  Google Scholar 

  759. Olafsen T, Bartlett D, Ho D, Zhang G, Torgov M, Keppler J, Behrenbruch C, Wu A, Pandit-Taskar N, Morris MJ, Lewis JS, Lyashchenko SK, Gudas JMJ. Minibody imaging of prostate-specific membrane antigen (PSMA): from concept to clinic. Clin Oncol. 2014;32:e16057.

    Article  Google Scholar 

  760. Flores O, Santra S, Kaittanis C, Bassiouni R, Khaled AS, Khaled AR, Grimm J, Perez JM. PSMA-targeted theranostic nanocarrier for prostate cancer. Theranostics. 2017;7:2477–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  761. Kopka K, Benešová M, Bařinka C, Haberkorn U, Babich J. Glu-Ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J Nucl Med. 2017;58:17S–26S.

    Article  CAS  PubMed  Google Scholar 

  762. von Eyben FE, Roviello G, Kiljunen T, Uprimny C, Virgolini I, Kairemo K, Joensuu T. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging. 2018;45:496–508.

    Article  CAS  Google Scholar 

  763. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, Joyal J, Kopka K, Debus J, Babich JW, Haberkorn U. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  764. Coleman RE, Barrett JA, Hussain A, Slawin KM, Armor T, LaFrance ND, Babich JW. Prostate-specific membrane antigen (PSMA)-targeted imaging of metastatic prostate cancer (PCa) via small molecule inhibitors: comparison to bone scan, CT/MRI, and 111In capromab. J Clin Oncol. 2011;29:4658.

    Article  Google Scholar 

  765. Schmidkonz C, Cordes M, Beck M, Goetz TI, Schmidt D, Prante O, Bäuerle T, Uder M, Wullich B, Goebell P, Kuwert T, Ritt P. SPECT/CT with the PSMA ligand 99mTc-MIP-1404 for whole-body primary staging of patients with prostate cancer. Clin Nucl Med. 2018;43:225–31.

    Article  PubMed  Google Scholar 

  766. Afshar-Oromieh A, Haberkorn U, Hadaschik B, Habl G, Eder M, Eisenhut M, Schlemmer HP, Roethke MC. PET/MRI with a 68Ga-PSMA ligand for the detection of prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:1629–30.

    Article  PubMed  Google Scholar 

  767. Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, Guner G, Munari E, Partin AW, Pavlovich CP, Han M, Carter HB, Bivalacqua TJ, Blackford A, Holt D, Dannals RF, Netto GJ, Lodge MA, Mease RC, Pomper MG, Cho SY. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.

    Article  CAS  PubMed  Google Scholar 

  768. Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benešová M, Eder M, Neels OC, Eisenhut M, Kübler W, Holland-Letz T, Giesel FL, Mier W, Kopka K, Haberkorn U. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56:1697–705.

    Article  CAS  PubMed  Google Scholar 

  769. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, Armor T, Stubbs JB, Maresca KP, Stabin MG, Joyal JL, Eckelman WC, Babich JW. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54:380–7.

    Article  CAS  PubMed  Google Scholar 

  770. Meyrick DP, Asokendaran M, Skelly LA, Lenzo NP, Henderson A. The role of 68Ga-PSMA-I&T PET/CT in the pretreatment staging of primary prostate cancer. Nucl Med Commun. 2017;38:956–63.

    Article  PubMed  Google Scholar 

  771. Schottelius M, Wirtz M, Eiber M, Maurer T, Wester H-J. [111In]PSMA-I&T: expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. EJNMMI Res. 2015;5:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  772. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann C. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.

    Article  CAS  PubMed  Google Scholar 

  773. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, Holland-Letz T, Giesel FL, Kratochwil C, Haufe S, Haberkorn U, Zechmann CM. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    Article  CAS  PubMed  Google Scholar 

  774. Schuhmacher J, Matys R, Hauser H, Maier-Borst W, Matzku S. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Eur J Nucl Med. 1986;12:397–404.

    Article  CAS  PubMed  Google Scholar 

  775. Zöller M, Schuhmacher J, Reed J, Maier-Borst W, Matzku S. Establishment and characterization of monoclonal antibodies against an octahedral gallium chelate suitable for immunoscintigraphy with PET. J Nucl Med. 1992;33:1366–72.

    PubMed  Google Scholar 

  776. Dam JH, Olsen BB, Baun C, Høilund-Carlsen PF, Thisgaard H. A PSMA ligand labeled with cobalt-55 for PET imaging of prostate cancer. Mol Imaging Biol. 2017;19:915–22.

    Article  CAS  PubMed  Google Scholar 

  777. Han X-D, Liu C, Liu F, Xie Q-H, Liu T-L, Guo X-Y, Xu X-X, Yang X, Zhu H, Yang Z. 64Cu-PSMA-617: a novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model. Oncotarget. 2017;8:74159–69.

    Article  PubMed  PubMed Central  Google Scholar 

  778. Umbricht CA, Benešová M, Schmid RM, Türler A, Schibli R, van der Meulen NP, Müller C. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017;7:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  779. Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, Tritschler S, Stief CG, Kopka K, Haberkorn U, Bartenstein P, Böning G. Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43:42–51.

    Article  CAS  PubMed  Google Scholar 

  780. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.

    Article  CAS  PubMed  Google Scholar 

  781. Sathekge M, Knoesen O, Meckel M, Modiselle M, Vorster M, Marx S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1099–100.

    Article  PubMed  PubMed Central  Google Scholar 

  782. Bräuer A, Grubert LS, Roll W, Schrader AJ, Schäfers M, Bögemann M, Rahbar K. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1663–70.

    Article  PubMed  CAS  Google Scholar 

  783. von Eyben FE, Kiljunen T, Joensuu T, Kairemo K, Uprimny C, Virgolini I. 177Lu-PSMA-617 radioligand therapy for a patient with lymph node metastatic prostate cancer. Oncotarget. 2017;8:66112–6.

    Article  Google Scholar 

  784. Yadav MP, Ballal S, Tripathi M, Damle NA, Sahoo RK, Seth A, Bal C. 177Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. Eur J Nucl Med Mol Imaging. 2017;44:81–91.

    Article  CAS  PubMed  Google Scholar 

  785. Ahmadzadehfar H, Wegen S, Yordanova A, Fimmers R, Kürpig S, Eppard E, Wei X, Schlenkhoff C, Hauser S, Essler M. Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [177Lu]Lu-PSMA-617. Eur J Nucl Med Mol Imaging. 2017;44:1448–54.

    Article  CAS  PubMed  Google Scholar 

  786. Yordanova A, Becker A, Eppard E, Kürpig S, Fisang C, Feldmann G, Essler M, Ahmadzadehfar H. The impact of repeated cycles of radioligand therapy using [177Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1473–9.

    Article  CAS  PubMed  Google Scholar 

  787. Kratochwil C, Bruchertseifer F, Giesel FL, Apostolidis C, Haberkorn U, Morgenstern A. Ac-225-PSMA-617 for PSMA targeting alpha-radiation therapy of 28 patients with mCRPC. Eur J Nucl Med Mol Imaging. 2016;43:S137.

    Google Scholar 

  788. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, Iravani A, Kong G, Ravi Kumar A, Murphy DG, Eu P, Jackson P, Scalzo M, Williams SG, Sandhu S. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825–33.

    Article  CAS  PubMed  Google Scholar 

  789. Giesel FL, Kesch C, Yun M, Cardinale J, Haberkorn U, Kopka K, Kratochwil C, Hadaschik BA. 18F-PSMA-1007 PET/CT detects micrometastases in a patient with biochemically recurrent prostate cancer. Clin Genitourin Cancer. 2017;15:e497–9.

    Article  PubMed  Google Scholar 

  790. Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010;10:255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  791. Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm. 2009;24:155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  792. Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med. 2002;43:693–713.

    CAS  PubMed  Google Scholar 

  793. Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 2002;24:1720–40.

    Article  CAS  PubMed  Google Scholar 

  794. Troyer JK, Beckett ML, Wright GL. Location of prostate-specific membrane antigen in the LNCaP prostate carcinoma cell line. Prostate. 1997;30:232–42.

    Article  CAS  PubMed  Google Scholar 

  795. Bander NH, Trabulsi EJ, Kostakoglu L, Yao D, Vallabhajosula S, Smith-Jones P, Joyce MA, Milowsky M, Nanus DM, Goldsmith SJ. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol. 2003;170:1717–21.

    Article  CAS  PubMed  Google Scholar 

  796. DiPippo VA, Olson WC, Nguyen HM, Brown LG, Vessella RL, Corey E. Efficacy studies of an antibody-drug conjugate PSMA-ADC in patient-derived prostate cancer xenografts. Prostate. 2015;75:303–13.

    Article  CAS  PubMed  Google Scholar 

  797. Fleuren EDG, Versleijen-Jonkers YMH, Heskamp S, van Herpen CML, Oyen WJG, van der Graaf WTA, Boerman Otto C. Theranostic applications of antibodies in oncology. Mol Oncol. 2014;8:799–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  798. Olson WC, Israel RJ. Antibody-drug conjugates targeting prostate-specific membrane antigen. Front Biosci. 2014;19:12–33.

    Article  CAS  Google Scholar 

  799. Fung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, Chalasani S, Weber WA, Spratt DE, Veach DR, Bander NH, Larson SM, Zanzonico PB, Osborne JR. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res. 2016;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  800. Pandit-Taskar N, O’Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, Durack JC, Carrasquillo JA, Lefkowitz RA, Gonen M, Lewis JS, Holland JP, Cheal SM, Reuter VE, Osborne JR, Loda MF, Smith-Jones PM, Weber WA, Bander NH, Scher HI, Morris MJ, Larson SM. Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:2093–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  801. Pandit-Taskar N, O’Donoghue JA, Divgi CR, Wills EA, Schwartz L, Gönen M, Smith-Jones P, Bander NH, Scher HI, Larson SM, Morris MJ. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 2015;5:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  802. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, Osborne J, Goldsmith SJ, Larson S, Taskar NP, Scher HI, Bander NH, Nanus DM. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  803. Dumont RA, Tamma M, Braun F, Borkowski S, Reubi JC, Maecke H, Weber WA, Mansi R. Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin. J Nucl Med. 2013;54:762–9.

    Article  CAS  PubMed  Google Scholar 

  804. Sancho V, Florio AD, Moody TW, Jensen RT. Bombesin receptor-mediated imaging and cytotoxicity. Rev Curr Stat Curr Drug Deliv. 2011;8:79–134.

    Article  CAS  Google Scholar 

  805. Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med. 2008;49:318–26.

    Article  CAS  PubMed  Google Scholar 

  806. Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, Maecke HR, Reubi JC, Weber WA. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist – from mice to men. Theranostics. 2014;4:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  807. Bodei L, Ferrari M, Nunn A, Llull J, Cremonesi M, Martano L, Laurora G, Scardino E, Tiberini S, Bufi G, Eaton S, de Cobelli O, Paganelli G. 177Lu-AMBA bombesin analogue in hormone refractory prostate cancer patients: a phase I escalation study with single-cycle administrations. Eur J Nucl Med Mol Imaging. 2007;34:S221.

    Google Scholar 

  808. Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, Vasanawala S, Gambhir SS, Iagaru A. Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 2016;57:557–62.

    Article  CAS  PubMed  Google Scholar 

  809. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390:298–310.

    Article  PubMed  Google Scholar 

  810. Kosmas C, Stamatopoulos K, Stavroyianni N, Tsavaris N, Papadaki T. Anti-CD20-based therapy of B cell lymphoma: state of the art. Leukemia. 2002;16:2004.

    Article  CAS  PubMed  Google Scholar 

  811. Dotan E, Aggarwal C, Smith MR. Impact of rituximab (rituxan) on the treatment of B-cell non-Hodgkin’s lymphoma. P T. 2010;35:148–57.

    PubMed  PubMed Central  Google Scholar 

  812. Goldsmith SJ. Radioimmunotherapy of lymphoma: bexxar and zevalin. Semin Nucl Med. 2010;40:122–35.

    Article  PubMed  Google Scholar 

  813. Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in 131I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2005;32:458–69.

    Article  CAS  PubMed  Google Scholar 

  814. Dietlein M, Pels H, Schulz H, Staak O, Borchmann P, Schomäcker K, Fischer T, Eschner W, Strandmann Elke P, Schicha H, Engert A, Schnell R. Imaging of central nervous system lymphomas with iodine-123 labeled rituximab. Eur J Haematol. 2005;74:348–52.

    Article  CAS  PubMed  Google Scholar 

  815. Leahy MF, Seymour JF, Hicks RJ, Turner JH. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24:4418–25.

    Article  CAS  PubMed  Google Scholar 

  816. Rizzieri D. Zevalin® (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol. 2016;105:5–17.

    Article  PubMed  Google Scholar 

  817. Spies SM. Imaging and dosing in radioimmunotherapy with Yttrium 90 ibritumomab tiuxetan (Zevalin). Semin Nucl Med. 2004;34:10–3.

    Article  PubMed  Google Scholar 

  818. Evens AM, Gordon LI. Radioimmunotherapy in non-Hodgkin’s lymphoma: trials of yttrium 90-labeled ibritumomab tiuxetan and beyond. Clin Lymphoma. 2004;5:S11–5.

    Article  CAS  PubMed  Google Scholar 

  819. Scholz CW, Pinto A, Linkesch W, Lindén O, Viardot A, Keller U, Hess G, Lastoria S, Lerch K, Frigeri F, Arcamone M, Stroux A, Frericks B, Pott C, Pezzutto A. 90Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31:308–13.

    Article  CAS  PubMed  Google Scholar 

  820. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N, Grillo-López AJ, Multani P, White CA. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    Article  CAS  PubMed  Google Scholar 

  821. Iagaru A, Mittra ES, Ganjoo K, Knox SJ, Goris ML. 131I-tositumomab (Bexxar®) vs. 90Y-ibritumomab (Zevalin®) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imaging Biol. 2010;12:198–203.

    Article  PubMed  Google Scholar 

  822. DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. 67Cu-versus 131I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res. 1999;5:533–41.

    CAS  PubMed  Google Scholar 

  823. O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, Goldstein DS, Carr CE, Mirick GR, DeNardo SJ. A clinical trial of radioimmunotherapy with 67Cu-21T-BAT-Lym-1 for non-Hodgkin’s lymphoma. J Nucl Med. 1999;40:2014–20.

    PubMed  Google Scholar 

  824. Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics. 2013;3:34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  825. Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet. 2015;385:2197–208.

    Article  PubMed  CAS  Google Scholar 

  826. Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, Schumacher U, Schwaiger M, Kessler H, Wester H-J. PET of CXCR4 expression by a 68Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52:1803–10.

    Article  CAS  PubMed  Google Scholar 

  827. Lapa C, Schreder M, Schirbel A, Samnick S, Kortüm KM, Herrmann K, Kropf S, Einsele H, Buck AK, Wester H-J, Knop S, Lückerath K. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma – comparison to [18F]FDG and laboratory values. Theranostics. 2017;7:205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  828. Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner F-P, Ettl J, Keller U, Wester H-J, Schwaiger M. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J Nucl Med. 2016;57:741–6.

    Article  CAS  PubMed  Google Scholar 

  829. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, Lückerath K, Schreder M, Bluemel C, Knott M, Keller U, Schirbel A, Samnick S, Lassmann M, Kropf S, Buck AK, Einsele H, Wester H-J, Knop S. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57:248–51.

    Article  CAS  PubMed  Google Scholar 

  830. Lapa C, Herrmann K, Schirbel A, Hänscheid H, Lückerath K, Schottelius M, Kircher M, Werner RA, Schreder M, Samnick S, Kropf S, Knop S, Buck AK, Einsele H, Wester H-J, Kortüm KM. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7:1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  831. Lau J, Lin KS, Benard F. Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics. 2017;7:4322–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  832. Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38.

    Article  CAS  PubMed  Google Scholar 

  833. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168.

    Article  CAS  PubMed  Google Scholar 

  834. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, Chen D, Carrasquillo JA, Larson S, Bevan P, Russo P. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–94.

    Article  PubMed  Google Scholar 

  835. Muselaers CHJ, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJG, Mulders PFA. Indium-111-labeled girentuximab immunoSPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol. 2013;63:1101–6.

    Article  CAS  PubMed  Google Scholar 

  836. Stillebroer AB, Boerman OC, Desar IME, Boers-Sonderen MJ, van Herpen CML, Langenhuijsen JF, Smith-Jones PM, Oosterwijk E, Oyen WJG, Mulders PFA. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2013;64:478–85.

    Article  CAS  PubMed  Google Scholar 

  837. Askoxylakis V, Garcia-Boy R, Rana S, Krämer S, Hebling U, Mier W, Altmann A, Markert A, Debus J, Haberkorn U. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology. PLoS One. 2011;5:e15962.

    Article  CAS  Google Scholar 

  838. Rami M, Cecchi A, Montero J-L, Innocenti A, Vullo D, Scozzafava A, Winum J-Y, Supuran Claudiu T. Carbonic anhydrase inhibitors: design of membrane-impermeant copper(II) complexes of DTPA-, DOTA-, and TETA-tailed sulfonamides targeting the tumor-associated transmembrane isoform IX. ChemMedChem. 2008;3:1780–8.

    Article  CAS  PubMed  Google Scholar 

  839. Davidoff AM. Neuroblastoma. Semin Pediatr Surg. 2012;21:2–14.

    Article  PubMed  PubMed Central  Google Scholar 

  840. Pashankar FD, O’Dorisio MS, Menda Y. MIBG and somatostatin receptor analogs in children: current concepts on diagnostic and therapeutic use. J Nucl Med. 2005;46:55S–61S.

    CAS  PubMed  Google Scholar 

  841. DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol. 2008;35:S35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  842. El-Maghraby T. 131I-MIBG in the diagnosis of primary and metastatic neuroblastoma. Gulf J Oncolog. 2007;2007:33–41.

    Google Scholar 

  843. Kraal KCJM, Bleeker GM, van Eck-Smit BLF, van Eijkelenburg NKA, Berthold F, van Noesel MM, Caron HN, Tytgat GAM. Feasibility, toxicity and response of upfront metaiodobenzylguanidine therapy therapy followed by German Pediatric Oncology Group Neuroblastoma 2004 protocol in newly diagnosed stage 4 neuroblastoma patients. Eur J Cancer. 2017;76:188–96.

    Article  CAS  PubMed  Google Scholar 

  844. Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.

    Article  CAS  PubMed  Google Scholar 

  845. Luo Y, Pan Q, Yao S, Yu M, Wu W, Xue H, Kiesewetter DO, Zhu Z, Li F, Zhao Y, Chen X. Glucagon-like peptide-1 receptor PET/CT with 68Ga-NOTA-exendin-4 for detecting localized insulinoma: a prospective cohort study. J Nucl Med. 2016;57:715–20.

    Article  CAS  PubMed  Google Scholar 

  846. Velikyan I, Bulenga TN, Selvaraju R, Lubberink M, Espes D, Rosenström U, Eriksson O. Dosimetry of [177Lu]-DO3A-VS-Cys40-Exendin-4 – impact on the feasibility of insulinoma internal radiotherapy. Am J Nucl Med Mol Imaging. 2015;5:109–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  847. Roosenburg S, Laverman P, van Delft FL, Boerman OC. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids. 2011;41:1049–58.

    Article  CAS  PubMed  Google Scholar 

  848. Rottenburger C, Nicolas G, McDougall L, Kaul F, Cachovan M, Schibli R, Geistlich S, Béhé M, Wild D, Christ E. Evaluation of the CCK-2-receptor agonist 177Lu-PP-F11N for peptide receptor radionuclide therapy (PRRT) of medullary thyroid carcinoma – first results of a phase 0 ‘Lumed’ study. Endocr Abstr. 2018;56:GP234.

    Google Scholar 

  849. Cachin F, Miot-Noirault E, Gillet B, Isnardi V, Labeille B, Payoux P, Meyer N, Cammilleri S, Gaudy C, Razzouk-Cadet M, Lacour JP, Granel-Brocard F, Tychyj C, Benbouzid F, Grange JD, Baulieu F, Kelly A, Merlin C, Mestas D, Gachon F, Chezal JM, Degoul F, D’Incan M. 123I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nucl Med. 2014;55:15–22.

    Article  CAS  PubMed  Google Scholar 

  850. Mier W, Kratochwil C, Hassel JC, Giesel FL, Beijer B, Babich JW, Friebe M, Eisenhut M, Enk A, Haberkorn U. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med. 2014;55:9–14.

    Article  CAS  PubMed  Google Scholar 

  851. Sahlmann Carsten O, Homayounfar K, Niessner M, Dyczkowski J, Conradi L-C, Braulke F, Meller B, Beißbarth T, Ghadimi BM, Meller J, Goldenberg David M, Liersch T. Repeated adjuvant anti-CEA radioimmunotherapy after resection of colorectal liver metastases: safety, feasibility, and long-term efficacy results of a prospective phase 2 study. Cancer. 2016;123:638–49.

    Article  CAS  Google Scholar 

  852. Sultana A, Shore S, Raraty MGT, Vinjamuri S, Evans JE, Smith CT, Lane S, Chauhan S, Bosonnet L, Garvey C, Sutton R, Neoptolemos JP, Ghaneh P. Randomised phase I/II trial assessing the safety and efficacy of radiolabelled anti-carcinoembryonic antigen (131I)KAb201 antibodies given intra-arterially or intravenously in patients with unresectable pancreatic adenocarcinoma. BMC Cancer. 2009;9:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  853. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Knoedler P, Lang K, Buck AK, Reiners C, Allolio B, Schirbel A. [131I]Iodometomidate for targeted radionuclide therapy of advanced adrenocortical carcinoma. J Clin Endocrinol Metabol. 2012;97:914–22.

    Article  CAS  Google Scholar 

  854. Kreissl MC, Schirbel A, Fassnacht M, Haenscheid H, Verburg FA, Bock S, Saeger W, Knoedler P, Reiners C, Buck AK, Allolio B, Hahner S. [123I]Iodometomidate imaging in adrenocortical carcinoma. J Clin Endocrinol Metabol. 2013;98:2755–64.

    Article  CAS  Google Scholar 

  855. Bergmann R, Meckel M, Kubíček V, Pietzsch J, Steinbach J, Hermann P, Rösch F. 177Lu-labelled macrocyclic bisphosphonates for targeting bone metastasis in cancer treatment. EJNMMI Res. 2016;6:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  856. Fellner M, Baum RP, Kubíček V, Hermann P, Lukeš I, Prasad V, Rösch F. PET/CT imaging of osteoblastic bone metastases with 68Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging. 2010;37:834.

    Article  PubMed  Google Scholar 

  857. Artiko V, Afgan A, Petrović J, Radović B, Petrović N, Vlajković M, Šobic-Šaranović D, Obradović V. Evaluation of neuroendocrine tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Rev. 2016;19:99–103.

    Article  Google Scholar 

  858. Hankus J, Tomaszewska R. Neuroendocrine neoplasms and somatostatin receptor subtypes expression. Nucl Med Rev. 2016;19:111–7.

    Article  Google Scholar 

  859. Trogrlic M, Tezak S. 99mTc-EDDA/HYNIC-TOC in management of patients with head and neck somatostatin receptor positive tumors. Nucl Med Rev. 2016;19:74–80.

    Article  Google Scholar 

  860. King RC, Surfraz MB-U, Biagini SCG, Blower PJ, Mather SJ. How do HYNIC-conjugated peptides bind technetium? Insights from LC-MS and stability studies. Cambridge: Dalton Transactions; 2007. p. 4998–5007.

    Google Scholar 

  861. Meszaros LK, Dose A, Biagini SCG, Blower PJ. Hydrazinonicotinic acid (HYNIC) – coordination chemistry and applications in radiopharmaceutical chemistry. Inorg Chim Acta. 2010;363:1059–69.

    Article  CAS  Google Scholar 

  862. Decristoforo C, Mather SJ. Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide. Bioconjug Chem. 1999;10:431–8.

    Article  CAS  PubMed  Google Scholar 

  863. Storch D, Béhé M, Walter MA, Chen J, Powell P, Mikolajczak R, Mäcke HR. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In-DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med. 2005;46:1561–9.

    CAS  PubMed  Google Scholar 

  864. Maina T, Nock B, Nikolopoulou A, Sotiriou P, Loudos G, Maintas D, Cordopatis P, Chiotellis E. [99mTc]demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging. 2002;29:742–53.

    Article  CAS  PubMed  Google Scholar 

  865. Maina T, Nock BA, Cordopatis P, Bernard BF, Breeman WAP, van Gameren A, van den Berg R, Reubi J-C, Krenning EP, de Jong M. [99mTc]Demotate 2 in the detection of sst2-positive tumours: a preclinical comparison with [111In]DOTA-tate. Eur J Nucl Med Mol Imaging. 2006;33:831–40.

    Article  PubMed  Google Scholar 

  866. Wild D, Fani M, Behe M, Brink I, Rivier JEF, Reubi JC, Maecke HR, Weber WA. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med. 2011;52:1412–7.

    Article  CAS  PubMed  Google Scholar 

  867. Morgat C, Mishra AK, Varshney R, Allard M, Fernandez P, Hindié E. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med. 2014;55:1650–7.

    Article  CAS  PubMed  Google Scholar 

  868. Maxwell JE, Howe JR. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol. 2015;2:159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  869. Savelli G, Bertagna F, Franco F, Dognini L, Bosio G, Migliorati E, Rodella C, Biasiotto G, Bettinsoli G, Minari C, Zaniboni A, Ferrari C, Tomassetti P, Ferrari V, Giubbini R. Final results of a phase 2A study for the treatment of metastatic neuroendocrine tumors with a fixed activity of 90Y-DOTA-D-Phe1-Tyr3 octreotide. Cancer. 2012;118:2915–24.

    Article  CAS  PubMed  Google Scholar 

  870. Cwikla JB, Sankowski A, Seklecka N, Buscombe JR, Nasierowska-Guttmejer A, Jeziorski KG, Mikolajczak R, Pawlak D, Stepien K, Walecki J. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21:787–94.

    Article  CAS  PubMed  Google Scholar 

  871. Sergieva S, Robev B, Dimcheva M, Fakirova A, Hristoskova R. Clinical application of SPECT-CT with 99mTc-Tektrotyd in bronchial and thymic neuroendocrine tumors (NETs). Nucl Med Rev. 2016;19(2):81–7.

    Article  Google Scholar 

  872. Decristoforo C, Maina T, Nock B, Gabriel M, Cordopatis P, Moncayo R. 99mTc-Demotate 1: first data in tumour patients—results of a pilot/phase I study. Eur J Nucl Med Mol Imaging. 2003;30:1211–9.

    Article  CAS  PubMed  Google Scholar 

  873. Reubi JC, Schaer J-C, Waser B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res. 1997;57:1377–86.

    CAS  PubMed  Google Scholar 

  874. Reubi JC. Targeting CCK receptors in human cancers. Curr Top Med Chem. 2007;7:1239–42.

    Article  CAS  PubMed  Google Scholar 

  875. Behr TM, Béhé MP. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32:97–109.

    Article  PubMed  Google Scholar 

  876. Gotthardt M, Béhé MP, Grass J, Bauhofer A, Rinke A, Schipper ML, Kalinowski M, Arnold R, Oyen WJG, Behr TM. Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr Relat Cancer. 2006;13:1203–11.

    Article  PubMed  Google Scholar 

  877. Gotthardt M, Béhé P, Beuter D, Battmann A, Bauhofer A, Schurrat T, Schipper M, Pollum H, Oyen WJG, Behr TM. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2006;33:1273–9.

    Article  PubMed  Google Scholar 

  878. Kosowicz J, Mikołajczak R, Czepczyński R, Ziemnicka K, Gryczyńska M, Sowiński J. Two peptide receptor ligands 99mTc-EDDA/HYNIC-Tyr3-octreotide and 99mTc-EDDA/HYNIC-DGlu-octagastrin for scintigraphy of medullary thyroid carcinoma. Cancer Biother Radiopharm. 2007;22:613–28.

    Article  CAS  PubMed  Google Scholar 

  879. Breeman WAP, Fröberg AC, de Blois E, van Gameren A, Melis M, de Jong M, Maina T, Nock BA, Erion JL, Mäcke HR, Krenning EP. Optimised labeling, preclinical and initial clinical aspects of CCK-2 receptor-targeting with 3 radiolabeled peptides. Nucl Med Biol. 2008;35:839–49.

    Article  CAS  PubMed  Google Scholar 

  880. Reubi JC, Maecke HR. Approaches to multireceptor targeting: hybrid radioligands, radioligand cocktails, and sequential radioligand applications. J Nucl Med. 2017;58:10S–6S.

    Article  CAS  PubMed  Google Scholar 

  881. Körner M, Stöckli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48:736–43.

    Article  PubMed  CAS  Google Scholar 

  882. Wild D, Béhé M, Wicki A, Storch D, Waser B, Gotthardt M, Keil B, Christofori G, Reubi JC, Mäcke HR. [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med. 2006;47:2025–33.

    CAS  PubMed  Google Scholar 

  883. Wild D, Mäcke H, Christ E, Gloor B, Reubi JC. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med. 2008;359:766–8.

    Article  CAS  PubMed  Google Scholar 

  884. Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin ME, Brändle M, Clerici T, Fischli S, Stettler C, Ell PJ, Seufert J, Gloor B, Perren A, Reubi JC, Forrer F. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. The Lancet Diabetes & Endocrinology. 2013;1:115–22.

    Article  CAS  Google Scholar 

  885. Christ E, Wild D, Forrer F, Brändle M, Sahli R, Clerici T, Gloor B, Martius F, Maecke H, Reubi JC. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metabol. 2009;94:4398–405.

    Article  CAS  Google Scholar 

  886. Sowa-Staszczak A, Trofimiuk-Müldner M, Stefańska A, Tomaszuk M, Buziak-Bereza M, Gilis-Januszewska A, Jabrocka-Hybel A, Głowa B, Małecki M, Bednarczuk T, Kamiński G, Kowalska A, Mikołajczak R, Janota B, Hubalewska-Dydejczyk A. 99mTc labeled glucagon-like peptide-1-analogue (99mTc-GLP1) scintigraphy in the management of patients with occult insulinoma. PLoS One. 2016;11:e0160714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  887. Sowa-Staszczak A, Pach D, Mikołajczak R, Mäcke H, Jabrocka-Hybel A, Stefańska A, Tomaszuk M, Janota B, Gilis-Januszewska A, Małecki M, Kamiński G, Kowalska A, Kulig J, Matyja A, Osuch C, Hubalewska-Dydejczyk A. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40:524–31.

    Article  CAS  PubMed  Google Scholar 

  888. Buchegger F, Bonvin F, Kosinski M, Schaffland AO, Prior J, Reubi JC, Bläuenstein P, Tourwé D, García Garayoa E, Bischof Delaloye A. Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med. 2003;44:1649–54.

    CAS  PubMed  Google Scholar 

  889. Gabriel M, Decristoforo C, Woll E, Eisterer W, Nock B, Maina T, Moncayo R, Virgolini I. [99mTc]Demotensin VI: biodistribution and initial clinical results in tumor patients of a pilot/phase I study. Cancer Biother Radiopharm. 2011;26:557–63.

    Article  CAS  PubMed  Google Scholar 

  890. De Vincentis G, Scopinaro F, Varvarigou A, Ussof W, Schillaci O, Archimandritis S, Corleto V, Longo F, Fave GD. Phase I trial of technetium [Leu13] bombesin as cancer seeking agent: possible scintigraphic guide for surgery? Tumori. 2002;88:S28–30.

    Article  PubMed  Google Scholar 

  891. Soluri A, Scopinaro F, De Vincentis G, Varvarigou A, Scafé R, Massa R, Schillaci O, Spanu A, David V. 99mTc [13LEU] bombesin and a new gamma camera, the imaging probe, are able to guide mammotome breast biopsy. Anticancer Res. 2003;23:2139–42.

    CAS  PubMed  Google Scholar 

  892. De Vincentis G, Remediani S, Varvarigou AD, Di Santo G, Iori F, Laurenti C, Scopinaro F. Role of 99mTc-bombesin scan in diagnosis and staging of prostate cancer. Cancer Biother Radiopharm. 2004;19:81–4.

    Article  PubMed  CAS  Google Scholar 

  893. Scopinaro F, Varvarigou AD, Ussof W, De Vincentis G, Sourlingas TG, Evangelatos GP, Datsteris J, Archimandritis SC. Technetium labeled bombesin-like peptide: preliminary report on breast cancer uptake in patients. Cancer Biother Radiopharm. 2002;17:327–35.

    Article  CAS  PubMed  Google Scholar 

  894. Scopinaro F, De Vincentis G, Varvarigou AD, Laurenti C, Iori F, Remediani S, Chiarini S, Stella S. 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging. 2003;30:1378–82.

    Article  PubMed  Google Scholar 

  895. Scopinaro F, De Vincentis G, Corazziari E, Massa R, Osti M, Pallotta N, Covotta A, Remediani S, Di Paolo M, Monteleone F, Varvarigou A. Detection of colon cancer with 99mTc-labeled bombesin derivative (99mTc-leu13-BN1). Cancer Biother Radiopharm. 2004;19:245–52.

    Article  CAS  PubMed  Google Scholar 

  896. Shariati F, Aryana K, Fattahi A, Forghani MN, Azarian A, Zakavi SR, Sadeghi R, Ayati N, Sadri K. Diagnostic value of 99mTc-bombesin scintigraphy for differentiation of malignant from benign breast lesions. Nucl Med Commun. 2014;35:620–5.

    Article  CAS  PubMed  Google Scholar 

  897. Santos-Cuevas CL, Ferro-Flores G, de Murphy CA, Pichardo-Romero PA. Targeted imaging of gastrin-releasing peptide receptors with 99mTc-EDDA/HYNIC-Lys3-bombesin: biokinetics and dosimetry in women. Nucl Med Commun. 2008;29:741–7.

    Article  CAS  PubMed  Google Scholar 

  898. Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R, Peers S, Thornback J, Slegers G, Dierckx RA. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med. 2000;27:1694–9.

    Article  PubMed  Google Scholar 

  899. Van de Wiele CV, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H. Biodistribution and dosimetry of 99mTc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med. 2001;42:1722–7.

    PubMed  Google Scholar 

  900. Van de Wiele C, Phonteyne P, Pauwels P, Goethals I, Van den Broecke R, Cocquyt V, Dierckx RA. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med. 2008;49:260–4.

    Article  PubMed  Google Scholar 

  901. Ananias HJK, Yu Z, Dierckx RA, van der Wiele C, Helfrich W, Wang F, Yan Y, Chen X, de Jong IJ, Elsinga PH. Technetium-HYNIC(tricine/TPPTS)-Aca-bombesin(7–14) as a targeted imaging agent with MicroSPECT in a PC-3 prostate cancer xenograft model. Mol Pharm. 2011;8:1165–73.

    Article  CAS  PubMed  Google Scholar 

  902. Mather SJ, Nock BA, Maina T, Gibson V, Ellison D, Murray I, Sobnack R, Colebrook S, Wan S, Halberrt G, Szysko T, Powles T, Avril N. GRP receptor imaging of prostate cancer using [99mTc]Demobesin 4: a First-in-Man Study. Mol Imaging Biol. 2014;16:888–95.

    Article  PubMed  Google Scholar 

  903. Scopinaro F, De Vincentis G, Varvarigou AD. Use of radiolabeled bombesin in humans. J Clin Oncol. 2005;23:3170–1.

    Article  PubMed  Google Scholar 

  904. Varvarigou A, Bouziotis P, Zikos C, Scopinaro F, De Vincentis G. Gastrin-releasing peptide (GRP) analogues for cancer imaging. Cancer Biother Radiopharm. 2004;19:219–29.

    Article  CAS  PubMed  Google Scholar 

  905. Nock BA, Nikolopoulou A, Galanis A, Cordopatis P, Waser B, Reubi J-C, Maina T. Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem. 2005;48:100–10.

    Article  CAS  PubMed  Google Scholar 

  906. Abiraj K, Mansi R, Tamma M-L, Fani M, Forrer F, Nicolas G, Cescato R, Reubi JC, Maecke HR. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor–positive tumors. J Nucl Med. 2011;52:1970–8.

    Article  CAS  PubMed  Google Scholar 

  907. Maddalena ME, Fox J, Chen J, Feng W, Cagnolini A, Linder KE, Tweedle MF, Nunn AD, Lantry LE. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med. 2009;50:2017–24.

    Article  PubMed  Google Scholar 

  908. Thomas R, Chen J, Roudier MM, Vessella RL, Lantry LE, Nunn AD. In vitro binding evaluation of 177Lu-AMBA, a novel 177Lu-labeled GRP-R agonist for systemic radiotherapy in human tissues. Clin Exp Metastasis. 2009;26:105–19.

    Article  CAS  PubMed  Google Scholar 

  909. Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–68.

    Article  CAS  PubMed  Google Scholar 

  910. Liolios C, Schäfer M, Haberkorn U, Eder M, Kopka K. Novel bispecific PSMA/GRPr targeting radioligands with optimized pharmacokinetics for improved PET imaging of prostate cancer. Bioconjug Chem. 2016;27:737–51.

    Article  CAS  PubMed  Google Scholar 

  911. Yao CH, Lin KJ, Weng CC, Hsiao IT, Ting YS, Yen TC, Jan TR, Skovronsky D, Kung MP, Wey SP. GMP-compliant automated synthesis of [18F]AV-45 (Florbetapir F 18) for imaging beta-amyloid plaques in human brain. Appl Radiat Isot. 2010;68:2293–7.

    Article  CAS  PubMed  Google Scholar 

  912. Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci. 2005;102:5981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  913. Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19:856–70.

    Article  PubMed  PubMed Central  Google Scholar 

  914. Kozikowski AP, Nan F, Conti P, Zhang J, Ramadan E, Bzdega T, Wroblewska B, Neale JH, Pshenichkin S, Wroblewski JT. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J Med Chem. 2001;44:298–301.

    Article  CAS  PubMed  Google Scholar 

  915. Zhou J, Neale JH, Pomper MG, Kozikowski AP. NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov. 2005;4:1015–26.

    Article  CAS  PubMed  Google Scholar 

  916. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, Olszewski RT, Heston WD, Kozikowski AP, Pomper MG. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11:4022–8.

    Article  CAS  PubMed  Google Scholar 

  917. Hillier SM, Kern AM, Maresca KP, Marquis JC, Eckelman WC, Joyal JL, Babich JW. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med. 2011;52:1087–93.

    Article  CAS  PubMed  Google Scholar 

  918. Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I, Solnes L, Maresca KP, Armor T, Joyal JL, Crummet R, Stubbs JB, Goldsmith SJ. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med. 2014;55:1791–8.

    Article  CAS  PubMed  Google Scholar 

  919. Bartholomä M, Valliant J, Maresca KP, Babich J, Zubieta J. Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals. Chem Commun. 2009;5:493–512.

    Article  Google Scholar 

  920. Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, Eckelman WC, Joyal JL, Babich JW. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013;54:1369–76.

    Article  CAS  PubMed  Google Scholar 

  921. Kimura H, Okuda H, Ishiguro M, Arimitsu K, Makino A, Nishii R, Miyazaki A, Yagi Y, Watanabe H, Kawasaki I, Ono M, Saji H. 18F-labeled pyrido[3,4-d]pyrimidine as an effective probe for imaging of L858R mutant epidermal growth factor receptor. ACS Med Chem Lett. 2017;8:418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  922. Lu G, Maresca KP, Hillier SM, Zimmerman CN, Eckelman WC, Joyal JL, Babich JW. Synthesis and SAR of 99mTc/Re-labeled small molecule prostate specific membrane antigen inhibitors with novel polar chelates. Bioorg Med Chem Lett. 2013;23:1557–63.

    Article  CAS  PubMed  Google Scholar 

  923. Misra P, Humblet V, Pannier N, Maison W, Frangioni JV. Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med. 2007;48:1379–89.

    Article  CAS  PubMed  Google Scholar 

  924. Maresca KP, Hillier SM, Lu G, Marquis JC, Zimmerman CN, Eckelman WC, Joyal JL, Babich JW. Small molecule inhibitors of PSMA incorporating technetium-99m for imaging prostate cancer: effects of chelate design on pharmacokinetics. Inorg Chim Acta. 2012;389:168–75.

    Article  CAS  Google Scholar 

  925. Goffin KE, Joniau S, Tenke P, Slawin K, Klein EA, Stambler N, Strack T, Babich J, Armor T, Wong V. Phase 2 study of 99mTc-trofolastat SPECT/CT to identify and localize prostate cancer in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic LN dissection. J Nucl Med. 2017;58:1408–13.

    Article  CAS  PubMed  Google Scholar 

  926. Robu S, Schottelius M, Eiber M, Maurer T, Gschwend J, Schwaiger M, Wester H-J. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017;58:235–42.

    Article  CAS  PubMed  Google Scholar 

  927. Weineisen M, Šimeček J, Schottelius M, Schwaiger M, Wester H-J. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014;4:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  928. Reinfelder J, Kuwert T, Beck M, Sanders JC, Ritt P, Schmidkonz C, Hennig P, Prante O, Uder M, Wullich B, Goebell P. First experience with SPECT/CT using a 99mTc-labeled inhibitor for prostate-specific membrane antigen in patients with biochemical recurrence of prostate cancer. Clin Nucl Med. 2017;42:26–33.

    Article  PubMed  Google Scholar 

  929. Strosberg JR, Halfdanarson TR, Bellizzi AM, Chan JA, Dillon J, Heaney AP, Kunz PL, O’Dorisio TM, Salem R, Segelov E, Howe J, Pommier R, Brendtro K, Bashir M, Singh S, Soulen MC, Tang L, Zacks JS, Yao J, Bergsland E. The North American Neuroendocrine Society (NANETS) consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas. 2017;46:707–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kopka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ermert, J. et al. (2020). Radiopharmaceutical Sciences. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics