Skip to main content

Imaging of Atherosclerosis with 18F-FDG PET

  • Chapter
  • First Online:
Clinical Nuclear Medicine
  • 1348 Accesses

Abstract

Despite significant therapeutic advances, myocardial infarction and stroke, as the clinical consequences of atherosclerosis, are the two most common causes of death in Europe and worldwide.

In clinical routine, evaluation of atherosclerosis still relies mainly on invasive of non-invasive assessment of the degree of intraluminal stenosis using invasive or CT angiography, which, however, do not provide information on plaque vulnerability, i.e., the risk of plaque rupture. Therefore, there is a clear need for non-invasive, highly sensitive measures to identify those high-risk plaques. In that regard, in vivo molecular imaging of pathological mechanisms in atherosclerosis by using positron emission tomography (PET) gained more and more interest over the last two decades. Numerous studies were published regarding PET imaging in atherosclerosis providing insights into the biological processes within the atherosclerotic plaque, improving risk stratification, and enabling the evaluation of novel therapies and interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095.

    Google Scholar 

  2. Nichols M, Townsend N, Luengo-Fernandez R, et al. European cardiovascular disease statistics 2012 edition. Brussels: European Heart Network and European Society of Cardiology; 2012.

    Google Scholar 

  3. Bucerius J, Hyafil F, Verberne HJ, et al. Cardiovascular Committee of the European Association of nuclear medicine (EANM). Position paper of the cardiovascular Committee of the European Association of nuclear medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43:780–92.

    PubMed  Google Scholar 

  4. Bucerius J, Mani V, Moncrieff C, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging. 2014a;41:369–83.

    PubMed  PubMed Central  Google Scholar 

  5. Davies JR, Rudd JH, Fryer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke. 2005;36:2642–7.

    PubMed  Google Scholar 

  6. Fifer KM, Qadir S, Subramanian S, et al. Positron emission tomography measurement of periodontal 18F-fluorodeoxyglucose uptake is associated with histologically determined carotid plaque inflammation. J Am Coll Cardiol. 2011;57:971–6.

    PubMed  Google Scholar 

  7. Figueroa AL, Subramanian SS, Cury RC, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging. 2012;5:69–77.

    PubMed  Google Scholar 

  8. Menezes LJ, Kotze CW, Hutton BF, et al. Vascular inflammation imaging with 18F-FDG PET/CT: when to image? J Nucl Med. 2009;50:854–7.

    PubMed  Google Scholar 

  9. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    CAS  PubMed  Google Scholar 

  10. Rudd JH, Machac J, Fayad ZA. Simvastatin and plaque inflammation. J Am Coll Cardiol. 2007b;49:1991. Author reply 1991–1992.

    PubMed  Google Scholar 

  11. Rudd JH, Fayad ZA, Machac J, et al. Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis. 2007c;192:453–4. Author reply 451–452.

    CAS  PubMed  Google Scholar 

  12. Rudd JH, Elkhawad M, Fayad ZA. Vascular imaging with 18F-FDG PET/CT: optimal 18F-FDG circulation time? J Nucl Med. 2009;50:1560.

    PubMed  Google Scholar 

  13. Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.

    CAS  PubMed  Google Scholar 

  14. Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.

    PubMed  Google Scholar 

  15. Lee WW, Chung JH, Jang SJ, et al. Consideration of serum glucose levels during malignant mediastinal lymph node detection in non-small-cell lung cancer by FDG-PET. J Surg Oncol. 2006;94:607–13.

    CAS  PubMed  Google Scholar 

  16. Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A comparative analysis. J Nucl Med. 2010;51:1015–20.

    PubMed  Google Scholar 

  17. Zhuang HM, Cortés-Blanco A, Pourdehnad M, et al. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun. 2001;22:1123–8.

    CAS  PubMed  Google Scholar 

  18. Shepherd PR, Kahn BB. Glucose transporters and insulin action – implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341:248–57.

    CAS  PubMed  Google Scholar 

  19. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    CAS  PubMed  Google Scholar 

  20. Bucerius J, Mani V, Moncrieff C, et al. Impact of non insulin-dependent type 2 diabetes on carotid wall (18)F-fluorodeoxyglucose positron emission tomography uptake. J Am Coll Cardiol. 2012;59:2080–8.

    PubMed  PubMed Central  Google Scholar 

  21. Gholami S, Salavati A, Houshmand S, et al. Assessment of atherosclerosis in large vessel walls: a comprehensive review of FDG-PET/CT image acquisition protocols and methods for uptake quantification. J Nucl Cardiol. 2015;22:468–79.

    PubMed  Google Scholar 

  22. Ogawa M, Ishino S, Mukai T, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med. 2004;45:1245–50.

    CAS  PubMed  Google Scholar 

  23. Zhao QM, Feng TT, Zhao X, et al. Imaging of atherosclerotic aorta of rabbit model by detection of plaque inflammation with fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. Chin Med J. 2011;124:911–7.

    CAS  PubMed  Google Scholar 

  24. Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.

    PubMed  Google Scholar 

  25. Rudd JH, Myers KS, Bansilal S, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007a;50:892–6.

    PubMed  Google Scholar 

  26. Rudd JH, Myers KS, Bansilal S, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.

    PubMed  Google Scholar 

  27. Johnsrud K, Skagen K, Seierstad T, et al. 18F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol. 2019;26:883–93.

    PubMed  PubMed Central  Google Scholar 

  28. Bucerius J, Mani V, Wong S, et al. Arterial and fat tissue inflammation are highly correlated: a prospective 18F-FDG PET/CT study. Eur J Nucl Med Mol Imaging. 2014b;41:934–45.

    PubMed  PubMed Central  Google Scholar 

  29. Elkhawad M, Rudd JH, Sarov-Blat L, et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC Cardiovasc Imaging. 2012;5:911–22.

    PubMed  Google Scholar 

  30. Tawakol A, Fayad ZA, Mogg R, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62:909–17.

    CAS  PubMed  Google Scholar 

  31. Emami H, Vucic E, Subramanian S, et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis. 2015;240:490–6.

    CAS  PubMed  Google Scholar 

  32. Kim TN, Kim S, Yang SJ, et al. Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ Cardiovasc Imaging. 2010;3:142–8.

    PubMed  Google Scholar 

  33. Tahara N, Kai H, Yamagishi S, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007;49:1533–9.

    CAS  PubMed  Google Scholar 

  34. Bucerius J, Duivenvoorden R, Mani V, et al. Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients: FDG-PET and CT imaging study. JACC Cardiovasc Imaging. 2011;4:1195–205.

    PubMed  PubMed Central  Google Scholar 

  35. Rominger A, Saam T, Wolpers S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    PubMed  Google Scholar 

  36. Marnane M, Merwick A, Sheehan OC, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71:709–18.

    PubMed  Google Scholar 

  37. Moon SH, Cho YS, Noh TS, et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc Imaging. 2015;8:949–56.

    PubMed  Google Scholar 

  38. Cho SG, Park KS, Kim J, et al. Prediction of coronary artery calcium progression by FDG uptake of large arteries in asymptomatic individuals. Eur J Nucl Med Mol Imaging. 2017;44:129–40.

    CAS  PubMed  Google Scholar 

  39. Ishii H, Nishio M, Takahashi H, et al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clin Ther. 2010;32:2337–47.

    CAS  PubMed  Google Scholar 

  40. Fayad ZA, Mani V, Woodward M, et al. Dal-PLAQUE investigators. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. de Boer SA, Heerspink HJ, Lefrandt JD, et al. Effect of Linagliptin on arterial 18F-Fluorodeoxyglucose positron emission tomography uptake: a randomized controlled trial (RELEASE). J Am Coll Cardiol. 2017;69:1097–8.

    PubMed  Google Scholar 

  42. Scheen AJ. Cardiovascular effects of gliptins. Nat Rev Cardiol. 2013;10:73–84.

    CAS  PubMed  Google Scholar 

  43. Mäki-Petäjä KM, Elkhawad M, Cheriyan J, et al. Anti-tumor necrosis factor-α therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126:2473–80.

    PubMed  Google Scholar 

  44. Adams RL, Adams IP, Lindow SW, et al. Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer. 2005;92:1493–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Armani C, Catalani E, Balbarini A, et al. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol. 2006;81:845–55.

    PubMed  Google Scholar 

  46. Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol. 2017;69:1774–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012a;59:1539–48.

    CAS  PubMed  Google Scholar 

  48. Dweck MR, Jones C, Joshi NV, et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012b;125:76–86.

    CAS  PubMed  Google Scholar 

  49. Dweck MR, Khaw HJ, Sng GK, et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J. 2013;34:1567–74.

    CAS  PubMed  Google Scholar 

  50. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bucerius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bucerius, J. (2020). Imaging of Atherosclerosis with 18F-FDG PET. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics