Skip to main content

Nuclear Medicine Imaging Techniques of the Musculoskeletal System

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

Bone scintigraphy is used as a common screening test for suspected bone metastases because of its high sensitivity, availability, low cost and ability to scan the entire skeleton. Historical data and clinical experience has established bone scintigraphy as the reference standard in the search for skeletal metastatic disease, and many indications have become established for benign skeletal disorders (Table 10.1). Chiewitz and Hevesy first described the use of radionuclides to study the skeleton in 1935 [1] where 32phosphorus (32P) activity was measured in rat organs with a Geiger Muller counter and where uptake of 32P from blood to bone was noted suggesting that skeletal metabolism is a dynamic process. Fleming and colleagues produced the first radionuclide skeletal images in 1961 using 85Sr [2], and this radioisotope was commonly used for bone scanning and the study of skeletal kinetics. Although 87mSr was introduced as an alternative bone scanning agent with a more suitable gamma ray for imaging of 388 KeV and half-life of 2.8 h, the introduction of 18F-fluoride and then 99mTc-labeled compounds superseded this. In 1971 Subramanian and McAfee successfully prepared technetium-99m-polyphosphates. However, it was later found that the bone localizing properties were due to pyrophosphate [3, 4]. Since then there have been many developments in both radiopharmaceuticals and scanning techniques to aid evaluation of metastatic bone disease. In recent years technetium-99m (99mTc)-labeled diphosphonates have become the most widely used radiopharmaceuticals, particularly 99mTc-methylene diphosphonate (MDP). Improvements in gamma camera design, including the increased availability of tomographic scintigraphy (single photon emission computed tomography, SPECT), have also helped nuclear medicine techniques which provide functional information and maintain their clinical utility in spite of the major advances in cross-sectional anatomical imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI). In recent years, there has been increasing interest in the use of positron emission tomography (PET) tracers in the investigation of various aspects of skeletal disease but especially in the diagnosis of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiewitz P, Hevesy G. Radioactive indicators in the study of phosphorus metabolism in rats. Nature. 1935;136:754–5.

    Article  CAS  Google Scholar 

  2. Fleming WH, McIraith JD, King ER. Photoscanning of bone lesions utilising strontium-85. Radiology. 1961;77:635–6.

    Article  CAS  PubMed  Google Scholar 

  3. Davis MA, Jones AL. Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med. 1976;6:19–31.

    Article  CAS  PubMed  Google Scholar 

  4. Subramanian G, McAfee JG. A new complex of Tc-99m for skeletal imaging. Radiology. 1971;99:192–6.

    Article  CAS  PubMed  Google Scholar 

  5. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    CAS  PubMed  Google Scholar 

  6. Subramanian G, McAfee JG, Bell EG, et al. 99m Tc-labeled polyphosphate as a skeletal imaging agent. Radiology. 1972;102:701–4.

    Article  CAS  PubMed  Google Scholar 

  7. Fogelman I. Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med. 1982;7:506–9.

    CAS  PubMed  Google Scholar 

  8. Caner B, Kitapcl M, Unlu M, Erbengi G, Calikoglu T, Gogus T, Bekdik C. Technetium-99m-MIBI uptake in benign and malignant bone lesions: a comparative study with technetium-99m-MDP. J Nucl Med. 1992;33:319–24.

    CAS  PubMed  Google Scholar 

  9. Elgazzar AH, Malki AA, Abdel-Dayem HM, Sahweil A, Razzak S, Jahan S, El-Sayed M, Omar YT. Role of thallium-201 in the diagnosis of solitary bone lesions. Nucl Med Commun. 1989;10:477–85.

    Article  CAS  PubMed  Google Scholar 

  10. Lam AS, Kettle AG, O'Doherty MJ, et al. Pentavalent 99Tcm-DMSA imaging in patients with bone metastases. Nucl Med Commun. 1997;18:907–14.

    Article  CAS  PubMed  Google Scholar 

  11. Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.

    Article  CAS  PubMed  Google Scholar 

  12. Warburg O. On the origin of cancer cells. Science. 1954;123:306–14.

    Google Scholar 

  13. Yamamoto T, Seino Y, Fukumoto H, et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990;170:223–30.

    Article  CAS  PubMed  Google Scholar 

  14. Bushnell DL, Kahn D, Huston B, Bevering CG. Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors. Skelet Radiol. 1995;24:13–6.

    Article  CAS  Google Scholar 

  15. Han LJ, Au-Yong TK, Tong WCM, et al. Comparison of bone SPECT and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bartel TB, Kuruva M, Gnanasegaran G, Beheshti M, Cohen EJ, Weissman AF, Yarbrough TL. SNMMI procedure standard for bone scintigraphy 4.0. J Nucl Med Technol. 2018;46(4):398–404.

    PubMed  Google Scholar 

  17. Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43(9):1723–38.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lassmann M, Treves ST. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41:1036–41.

    Article  CAS  PubMed  Google Scholar 

  19. Stauss J, Hahn K, Mann M, De Palma D. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37:1621–8.

    Article  PubMed  Google Scholar 

  20. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20.

    Article  PubMed  Google Scholar 

  21. Tofe AJ, Francis MD, Harvey WJ. Correlation of neoplasms with incidence and localisation of skeletal metastases. An analysis 0f 1355 diphosphonate bone scans. J Nucl Med. 1975;16:986–9.

    CAS  PubMed  Google Scholar 

  22. Baxter AD, Coakley FV, Finlay DB, West C. The aetiology of solitary hot spots in the ribs on planar bone scans. Nucl Med Commun. 1995;16:834–7.

    Article  CAS  PubMed  Google Scholar 

  23. Tumeh SS, Beadle G, Kaplan WD. Clinical significance of solitary rib lesions in patients with extraskeletal malignancy. J Nucl Med. 1985;26:1140–3.

    CAS  PubMed  Google Scholar 

  24. Coakley FV, Jones AR, Finlay DB, Belton IP. The aetiology and distinguishing features of solitary spinal hot spots on planar bone scans. Clin Radiol. 1995;50:327–30.

    Article  CAS  PubMed  Google Scholar 

  25. Coleman RE, Rubens RD, Fogelman I. A reappraisal of the baseline bone scan in breast cancer. J Nucl Med. 1988;29:1045–9.

    CAS  PubMed  Google Scholar 

  26. Galasko CSB. Skeletal metastases, vol. 1986. London: Butterworth; 1986.

    Google Scholar 

  27. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29:1354–9.

    CAS  PubMed  Google Scholar 

  28. McKillop JH, Blumgart LH, Wood CB, et al. The prognostic and therapeutic implications of the positive radionuclide bone scan in clinically early breast cancer. Br J Surg. 1978;65:649–52.

    Article  CAS  PubMed  Google Scholar 

  29. Bitran JD, Bekerman C, Desser RK. The predictive value of serial bone scans in assessing response to chemotherapy in advanced breast cancer. Cancer. 1980;45:1562–8.

    Article  CAS  PubMed  Google Scholar 

  30. Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narayan P. Neoplasms of the prostate gland. In: Tanagho EA, editor. Smith’s general urology. 14th ed. Appleton and Lange: Norwalk, CT; 1995. p. 392.

    Google Scholar 

  32. Batson O. The role of the vertebral veins in metastatic processes. Ann Intern Med. 1942;16:38–45.

    Article  Google Scholar 

  33. Dearnaley DP. Cancer of the prostate. Br Med J. 1994;308(6931):780–4.

    Article  CAS  Google Scholar 

  34. O'Sullivan JM, Cook GJ. A review of the efficacy of bone scanning in prostate and breast cancer. Q J Nucl Med. 2002;46(2):152–9.

    CAS  PubMed  Google Scholar 

  35. Zelefsky MJ, Leibel SA, Kutcher GJ, Kelson S, Ling CC, Fuks Z. The feasibility of dose escalation with three-dimensional conformal radiotherapy in patients with prostatic carcinoma. Cancer J Sci Am. 1995;1(2):142.

    CAS  PubMed  Google Scholar 

  36. Lee N, Fawaaz R, Olsson CA, Benson MC, Petrylak DP, Schiff PB, et al. Which patients with newly diagnosed prostate cancer need a radionuclide bone scan? An analysis based on 631 patients. Int J Radiat Oncol Biol Phys. 2000;48(5):1443–6.

    Article  CAS  PubMed  Google Scholar 

  37. Fogelman I, McKillop JH. The bone scan in metastatic disease. In: Rubens RD, Fogelman I, editors. Bone metastases: diagnosis and treatment. London: Springer; 1991. p. 31–5.

    Chapter  Google Scholar 

  38. Kim EE, Bledin AG, Gutierrez C, Haynie TP. Comparison of radionuclide images and radiographs for skeletal metastases from renal cell carcinoma. Oncology. 1983;40:284–6.

    Article  CAS  PubMed  Google Scholar 

  39. Bitran JD, Beckerman C, Pinsky S. Sequential scintigraphic staging of small cell carcinoma. Cancer. 1981;47:1971–5.

    Article  CAS  PubMed  Google Scholar 

  40. Levenson RM, Sauerbrunn FJL, Ihde DC, Bunn PA, Cohen MH, Minna JD. Small cell lung cancer: radionuclide bone scans for assessment of tumour extent and response. AJR. 1981;137:31–5.

    Article  PubMed  Google Scholar 

  41. Gravenstein S, Peltz MA, Poreis W. How ominous is an abnormal scan in bronchogenic carcinoma. JAMA. 1979;241:2523–4.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis P, Griffin S, Marsden P, et al. Whole body 18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet. 1994;344:1265–6.

    Article  CAS  PubMed  Google Scholar 

  43. Fawcett HD, McDougall IR. Bone scan in extraskeletal neuroblastoma with hot primary and cold skeletal metastases. Clin Nucl Med. 1980;5:49–50.

    Article  CAS  PubMed  Google Scholar 

  44. Howman-Giles R, Gilday DL, Ash JM. Radionuclide skeletal survey in neuroblastoma. Radiology. 1979;131:497–502.

    Article  CAS  PubMed  Google Scholar 

  45. Podrasky AER, Stark DD, Hattner RS, Gooding GA, Moss AA. Radionuclide bone scanning in neuroblastoma: skeletal metastases and primary tumour localisation of 99m-Tc MDP. AJR. 1983;141:469–72.

    Article  CAS  PubMed  Google Scholar 

  46. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.

    CAS  PubMed  Google Scholar 

  47. Cook GJR, Hannaford E, Lee M, Clarke SEM, Fogelman I. The value of bone scintigraphy in the evaluation of osteoporotic patients with back pain. Scand J Rheumatol. 2002;31:245–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fogelman I, Carr D. A comparison of bone scanning and radiology in the assessment of patients with symptomatic Paget’s disease. Eur J Nucl Med. 1980;5:417–21.

    CAS  PubMed  Google Scholar 

  49. Fogelman I, Carr D. A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol. 1980;31:321–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ryan PJ, Evans P, Gibson T, Fogelman I. Osteoporosis and chronic back pain: a study with SPECT bone scintigraphy. J Bone Miner Res. 1992;7:1455–60.

    Article  CAS  PubMed  Google Scholar 

  51. Ryan PJ, Evans PA, Gibson T, et al. Osteoporosis and chronic back pain: a study with single photon emission computed bone scintigraphy. J Bone Min Res. 1992;7(12):1455–60.

    Article  CAS  Google Scholar 

  52. Ryan PJ, Evans PA, Gibson T, Fogelman I. Chronic low back pain: comparison of bone SPECT with radiography and CT. Radiology. 1992;182:849–54.

    Article  CAS  PubMed  Google Scholar 

  53. Ryan PJ, Gibson T, Fogelman I. The identification of spinal pathology in chronic low back pain using SPECT. Nucl Med Commun. 1992;13:497–502.

    Article  CAS  PubMed  Google Scholar 

  54. Kosuda S, Tatsumi K, Yokoyama H, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastases than MRI? J Nucl Med. 1996;37:975–8.

    CAS  PubMed  Google Scholar 

  55. McKillop JH. Bone scanning in metastatic disease. In: Fogelman I, editor. Bone scanning in clinical practice. Berlin: Springer; 1987. p. 41–60.

    Chapter  Google Scholar 

  56. Roland J, van den Weygaert D, Krug B, Brans B, Scalliet P, Vandevivere J. Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med. 1995;20:1052–4.

    Article  CAS  PubMed  Google Scholar 

  57. Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med. 1999;24:407–13.

    Article  CAS  PubMed  Google Scholar 

  58. Fogelman I, McKillop JH, Bessent RG, et al. The role of bone scanning in osteomalacia. J Nucl Med. 1978;19:245–8.

    CAS  PubMed  Google Scholar 

  59. Mari C, Catafau A, Carrio I. Bone scintigraphy and metabolic bone disease. Semin Nucl Med. 1999;27:291–305.

    Google Scholar 

  60. Ryan PJ, Fogelman I. Bone scintigraphy in metabolic bone disease. Semin Nucl Med. 1997;27:291–305.

    Article  CAS  PubMed  Google Scholar 

  61. Murray IPC. Bone scintigraphy in trauma. In: IPC M, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. 2nd ed. Edinburgh: Churchill Livingstone; 1998. p. 1241–67.

    Google Scholar 

  62. Murray IPC. Vascular manifestations. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. 2nd ed. Edinburgh: Churchill Livingstone; 1998. p. 1223–40.

    Google Scholar 

  63. Wilder RP, Sethi S. Overuse injuries: tendinopathies, stress fractures, compartment syndrome, and shin splints. Clin Sports Med. 2004;23:55–81.

    Article  PubMed  Google Scholar 

  64. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8:344–53.

    Article  CAS  PubMed  Google Scholar 

  65. Drubach LA, Connolly LP, D'Hemecourt PA, Treves ST. Assessment of the clinical significance of asymptomatic lower extremity uptake abnormality in young athletes. J Nucl Med. 2001;42:209–12.

    CAS  PubMed  Google Scholar 

  66. McBryde AM Jr. Stress fractures in athletes. Clin Sports Med. 1985;4:737–52.

    Article  PubMed  Google Scholar 

  67. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58.

    Article  PubMed  Google Scholar 

  68. Rupani HD, Holder LE, Espinola DA, Engin SI. Three-phase radionuclide bone imaging in sports medicine. Radiology. 1985;156:187–96.

    Article  CAS  PubMed  Google Scholar 

  69. Holder LE, Michael RH. The specific scintigraphic pattern of “shin splints in the lower leg”: concise communication. J Nucl Med. 1984;25:865–9.

    CAS  PubMed  Google Scholar 

  70. Aburano T, Yokoyama K, Taki J, Nakajima K, Tonami N, Hisada K. Tc-99m MDP bone imaging in inflammatory enthesopathy. Clin Nucl Med. 1990;15:105–6.

    Article  CAS  PubMed  Google Scholar 

  71. Intenzo CM, Wapner KL, Park CH, Kim SM. Evaluation of plantar fasciitis by three-phase bone scintigraphy. Clin Nucl Med. 1991;16:325–8.

    Article  CAS  PubMed  Google Scholar 

  72. Goldsmith DP, Vivino FB, Eichenfield AH, et al. (1989) nuclear imaging and clinical features of childhood reflex neurovascular dystrophy: comparison with adults. Arthritis Rheum. 1989;32(4):480–5.

    Article  CAS  PubMed  Google Scholar 

  73. Turpin S, Taillefer R, Lambert R, Leveille J. “Cold” reflex sympathetic dystrophy in an adult. Clin Nucl Med. 1996;21(2):94–7.

    Article  CAS  PubMed  Google Scholar 

  74. Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med. 1997;27:334–45.

    Article  CAS  PubMed  Google Scholar 

  75. Palestro CJ. Musculoskeletal infection. In: Freeman LM, editor. Nuclear medicine annual. New York, NY: Raven Press; 1994. p. 91–119.

    Google Scholar 

  76. Peters AM. The utility of 99mTc-HMPAO-leukocytes for imaging infection. Semin Nucl Med. 1994;24(2):110–27.

    Article  CAS  PubMed  Google Scholar 

  77. Seabold JE, Nepola JV. Imaging techniques for evaluation of postoperative orthopedic infections. Q J Nucl Med. 1999;43(1):21–8.

    CAS  PubMed  Google Scholar 

  78. Levitsky KA, Hozack WJ, Balderston RA, et al. Evaluation of the painful prosthetic joint: relative value of bone scan, sedimentation rate, and joint aspiration. J Arthroplasty. 1991;6:237–44.

    Article  CAS  PubMed  Google Scholar 

  79. Stumpe KDM, Notzli HP, Zanetti M, Kamel EM, Hany TF, von Gorres GW, Schulthess GK, Hodler J. FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase Bone scintigraphy. Radiology. 2004;231:333–41.

    Article  PubMed  Google Scholar 

  80. Williamson BR, McLaughlin RE, Wang GW, Miller CW, Teates CD, Bray ST. Radionuclide bone imaging as a means of differentiating loosening and infection in patients with a painful total hip prosthesis. Radiology. 1979;133:723–5.

    Article  CAS  PubMed  Google Scholar 

  81. Aliabadi P, Tumeh SS, Weissman BN, McNeil BJ. Cemented total hip prosthesis: radiographic and scintigraphic evaluation. Radiology. 1989;173:203–6.

    Article  CAS  PubMed  Google Scholar 

  82. Mountford PJ, Coakley AJ. Role of technetium-99m phosphonate bone and indium-111 leukocyte scanning for detecting the infected hip prosthesis. J Nucl Med. 1989;30:562–3.

    CAS  PubMed  Google Scholar 

  83. Love C, Tomas MB, Marwin SE, Pugliese PV, Palestro CJ. Role of nuclear medicine in diagnosis of the infected joint replacement. Radiographics. 2001;21:1229–38.

    Article  CAS  PubMed  Google Scholar 

  84. Utz JA, Lull RJ, Galvin EG. Asymptomatic total hip prosthesis: natural history determined using Tc-MDP bone scans. Radiology. 1986;161:509–12.

    Article  CAS  PubMed  Google Scholar 

  85. Oswald SG, Van Nostrand D, Savory CG, Anderson JH, Callaghan JJ. Three-phase bone scan and indium white cell scintigraphy following porous coated hip arthroplasty: a prospective study of the prosthetic tip. J Nucl Med. 1989;30:1321–31.

    CAS  PubMed  Google Scholar 

  86. Oswald SG, Van Nostrand D, Savory CG, Anderson JH, Callaghan JJ. The acetabulum: a prospective study of three-phase bone and indium white blood cell scintigraphy following porous-coated hip arthroplasty. J Nucl Med. 1990;31:274–80.

    CAS  PubMed  Google Scholar 

  87. Hofmann AA, Wyatt RWB, Daniels AU, Armstrong L, Alazraki N, Taylor A Jr. Bone scan after total knee arthroplasty in asymptomatic patients. Clin Orthop. 1990;251:183–8.

    Article  Google Scholar 

  88. Rosenthal L, Lepanto L, Raymond F. Radiophosphate uptake in asymptomatic knee arthroplasty. J Nucl Med. 1987;28:1546–9.

    Google Scholar 

  89. Palestro CJ, Kim CK, Swyer AJ, Capozzi JD, Solomon RW, Goldsmith SJ. Total-hip arthroplasty: periprosthetic indium-111-labelled leukocyte activity and complementary technetium-99-m sulfur colloid imaging in suspected infection. J Nucl Med. 1990;31:1950–5.

    CAS  PubMed  Google Scholar 

  90. Palestro CJ, Swyer AJ, Kim CK, Goldsmith SJ. Infected knee prostheses: diagnosis with in-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology. 1991;179:645–8.

    Article  CAS  PubMed  Google Scholar 

  91. Dolan AL, Ryan PJ, Arden NK, et al. The value of SPECT scans in identifying back pain likely to benefit from facet joint injection. Br J Rheumatol. 1996;35:1269–73.

    Article  CAS  PubMed  Google Scholar 

  92. Holder LE, Machin JL, Asdourian PL, et al. Planar and high resolution SPECT bone imaging in the diagnosis of facet syndrome. J Nucl Med. 1995;36:37–44.

    CAS  PubMed  Google Scholar 

  93. Bellah RD, Summerville DA, Treves ST, et al. Low back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT. Radiology. 1991;180:509–12.

    Article  CAS  PubMed  Google Scholar 

  94. Bodner RJ, Heyman S, Drummond DS, et al. The use of SPECT in the diagnosis of low back pain in young patients. Spine. 1988;13:1155–60.

    Article  CAS  PubMed  Google Scholar 

  95. Collier BD, Carerra GF, Johnson RP, et al. Detection of femoral head avascular necrosis in adults by SPECT. J Nucl Med. 1985;26:979–87.

    CAS  PubMed  Google Scholar 

  96. Collier BD, Johnson RP, Carrera GF, et al. Chronic knee pain assessed by SPECT: comparison with other modalities. Radiology. 1985;157:795–802.

    Article  CAS  PubMed  Google Scholar 

  97. Collier BD, Johnson RP, Carrera GF, et al. Painful spondylolysis or spondylolisthesis studies by radiography and SPECT. Radiology. 1985;154:207–11.

    Article  CAS  PubMed  Google Scholar 

  98. Dutton JA, Hughes SP, Peters AM. SPECT in the management of patients with back pain and spondylolysis. Clin Nucl Med. 2000;25:93–6.

    Article  CAS  PubMed  Google Scholar 

  99. Read MT. SPECT scanning for adolescent back pain. A sine qua non? Br J Sports Med. 1994;28:56–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Slizofski WJ, Collier BD, Flately TJ, et al. Painful pseudoarthrosis following lumbar spine fusion: detection by combined SPECT and planar bone scintigraphy. Skel Radiol. 1987;16:136–41.

    Article  CAS  Google Scholar 

  101. Lusins JO, Danielski EF, Goldsmith SJ. Bone SPECT in patients with persistent back pain after lumbar spine surgery. J Nucl Med. 1989;30:490–6.

    CAS  PubMed  Google Scholar 

  102. Gates GF, McDonald RJ. Bone SPECT of the back after lumbar surgery. Clin Nucl Med. 1999;24(6):395–403.

    Article  CAS  PubMed  Google Scholar 

  103. Hanly JG, Mitchell MJ, Barnes DC, MacMillan L. Early recognition of sacroiliitis by MRI and SPECT. J Rheumatol. 1994;21:2088–95.

    CAS  PubMed  Google Scholar 

  104. Kim KY, Lee SH, Moon DH, et al. The diagnostic value of triple head SPECT in avascular necrosis of the femoral head. Int Orthop. 1993;17:132–8.

    CAS  PubMed  Google Scholar 

  105. Siddiqui AR, Kopecky KK, Wellman HN, et al. Prospective study of MRI and SPECT bone scans in renal allograft recipients: evidence for self-limited subclinical abnormality of the hips. J Nucl Med. 1993;34:381–6.

    CAS  PubMed  Google Scholar 

  106. Stulberg BN, Levine M, Bauer TW, et al. Multimodality approach to osteonecrosis of the femoral head. Clin Orthop Rel Res. 1989;240:181–93.

    Google Scholar 

  107. Desmet AA, Dalinka MK, Alazraki N, et al. Diagnostic imaging of avascular necrosis of the hip. Radiology. 2000;215:247–54.

    Article  PubMed  Google Scholar 

  108. Galasko CSB, Weber DA. Avascular necrosis. In: Galasko CSB, Weber DA, editors. Radionuclide scintigraphy in orthopaedics. Edinburgh: Churchill Livingstone; 1984. p. 200–9.

    Google Scholar 

  109. Fajman WA, Diehl M, Dunaway E. SPECT for acute knee pain. J Nucl Med. 1985;26:77.

    Google Scholar 

  110. Murray IPC, Dixon J, Kohan L. SPECT for acute knee pain. Clin Nucl Med. 1990;15:828–40.

    Article  CAS  PubMed  Google Scholar 

  111. Ryan PJ, Taylor M, Grevitt M, et al. Bone single-photon emission tomography in recent meniscal tears: an assessment of diagnostic criteria. Eur J Nucl Med. 1993;20:703–7.

    Article  CAS  PubMed  Google Scholar 

  112. Cook GJR, Ryan PJ, Clarke SEM, Fogelman I. Anterior cruciate ligament tear: findings on SPECT bone scintigraphy of the knee. J Nucl Med. 1996;37:1353–6.

    CAS  PubMed  Google Scholar 

  113. Cook GJR, Fogelman I. Lateral collateral ligament tear of the knee: appearances on bone scintigraphy with SPECT. Eur J Nucl Med. 1996;23:720–2.

    Article  CAS  PubMed  Google Scholar 

  114. Kraznow AZ, Collier BD, Kneeland JB, et al. Comparison of high resolution MRI and SPECT bone scintigraphy for non-invasive imaging of the temporomandibular joint. J Nucl Med. 1987;28:1268–74.

    Google Scholar 

  115. Toni MG, Calderazzi A, Battolia L, et al. SPECT in the study of pathology of the temporomandibular joint. Radiol Med. 1992;84:549–52. The authors personal experience.

    CAS  PubMed  Google Scholar 

  116. Strashun AM, Nejatheim M, Goldsmith SJ. Malignant otitis externa; early scintigraphic detection. Radiology. 1984;150:541–5.

    Article  CAS  PubMed  Google Scholar 

  117. Hardoff R, Gips S, Uri N, Front A, Tamir A. Semiquantitative skull planar and SPECT bone scintigraphy in diabetic patients: differentiation of necrotizing (malignant) external otitis from severe external otitis. J Nucl Med. 1994;35:411–5.

    CAS  PubMed  Google Scholar 

  118. Saha S, Burke C, Desai A, et al. SPECT-CT: applications in musculoskeletal radiology. Br J Radiol. 2013;86:20120519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gnanasegaran G, Paycha F, Strobel K, et al. Bone SPECT/CT in postoperative spine. Semin Nucl Med. 2018;48(5):410–24.

    Article  PubMed  Google Scholar 

  120. Hirschmann MT, Amsler F, Rasch H. Clinical value of SPECT/CT in the painful total knee arthroplasty (TKA): a prospective study in a consecutive series of 100 TKA. Eur J Nucl Med Mol Imaging. 2015;42(12):1869–82.

    Article  PubMed  Google Scholar 

  121. Van den Wyngaert T, Paycha F, Strobel K, et al. SPECT/CT in postoperative painful hip arthroplasty. Semin Nucl Med. 2018;48(5):425–38.

    Article  PubMed  Google Scholar 

  122. Van der Bruggen W, Hirschmann MT, Strobel K, et al. SPECT/CT in the postoperative painful knee. Semin Nucl Med. 2018;48(5):439–53.

    Article  PubMed  Google Scholar 

  123. Hirschmann A, Hirschmann MT. Chronic knee pain: clinical value of MRI versus SPECT/CT. Semin Musculoskelet Radiol. 2016;20(1):3–11.

    Article  PubMed  Google Scholar 

  124. Huellner MW, Strobel K. Clinical applications of SPECT/CT in imaging the extremities. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S50–8.

    Article  PubMed  Google Scholar 

  125. Kampen WU, Westphal F, Van den Wyngaert T, et al. SPECT/CT in postoperative foot and ankle pain. Semin Nucl Med. 2018;48(5):454–68.

    Article  PubMed  Google Scholar 

  126. Strobel K, van der Bruggen W, Hug U, et al. Bone SPECT/CT in postoperative hand and wrist pain. Semin Nucl Med. 2018;48(5):396–409.

    Article  PubMed  Google Scholar 

  127. Russo VM, Dhawan RT, Baudracco I, Dharmarajah N, Lazzarino AI, Casey AT. Hybrid bone SPECT/CT imaging in evaluation of chronic low back pain: correlation with facet joint arthropathy. World Neurosurg. 2017;107:732–8.

    Article  PubMed  Google Scholar 

  128. Jain A, Jain S, Agarwal A, Gambhir S, Shamshery C, Agarwal A. Evaluation of efficacy of bone scan with SPECT/CT in the Management of low back pain: a study supported by differential diagnostic local anesthetic blocks. Clin J Pain. 2015;31(12):1054–9.

    Article  PubMed  Google Scholar 

  129. Lee I, Budiawan H, Moon JY, Cheon GJ, Kim YC, Paeng JC, Kang KW, Chung JK, Lee DS. The value of SPECT/CT in localizing pain site and prediction of treatment response in patients with chronic low back pain. J Korean Med Sci. 2014;29(12):1711–6.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Al-Riyami K, Gnanasegaran G, Van den Wyngaert T, Bomanji J. Bone SPECT/CT in the postoperative spine: a focus on spinal fusion. Eur J Nucl Med Mol Imaging. 2017;44(12):2094–104.

    Article  PubMed  Google Scholar 

  131. Rager O, Schaller K, Payer M, Tchernin D, Ratib O, Tessitore E. SPECT/CT in differentiation of pseudarthrosis from other causes of back pain in lumbar spinal fusion: report on 10 consecutive cases. Clin Nucl Med. 2012;37(4):339–43.

    Article  PubMed  Google Scholar 

  132. Sumer J, Schmidt D, Ritt P, Lell M, Forst R, Kuwert T, Richter R. SPECT/CT in patients with lower back pain after lumbar fusion surgery. Nucl Med Commun. 2013;34(10):964–70.

    Article  PubMed  Google Scholar 

  133. Hudyana H, Maes A, Vandenberghe T, Fidlers L, Sathekge M, Nicolai D, Van de Wiele C. Accuracy of bone SPECT/CT for identifying hardware loosening in patients who underwent lumbar fusion with pedicle screws. Eur J Nucl Med Mol Imaging. 2016;43(2):349–54.

    Article  PubMed  Google Scholar 

  134. Schleich FS, Schürch M, Huellner MW, Hug U, von Wartburg U, Strobel K, Veit-Haibach P. Diagnostic and therapeutic impact of SPECT/CT in patients with unspecific pain of the hand and wrist. EJNMMI Res. 2012;2(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Huellner MW, Bürkert A, Schleich FS, Schürch M, Hug U, von Wartburg U, Strobel K, Veit-Haibach P. SPECT/CT versus MRI in patients with nonspecific pain of the hand and wrist – a pilot study. Eur J Nucl Med Mol Imaging. 2012;39(5):750–9.

    Article  PubMed  Google Scholar 

  136. Biersack HJ, Wingenfeld C, Hinterthaner B, Frank D, Sabet A. SPECT-CT of the foot. Nuklearmedizin. 2012;51(1):26–31.

    Article  PubMed  Google Scholar 

  137. Singh VK, Javed S, Parthipun A, Sott AH. The diagnostic value of single photon-emission computed tomography bone scans combined with CT (SPECT-CT) in diseases of the foot and ankle. Foot Ankle Surg. 2013;19(2):80–3.

    Article  PubMed  Google Scholar 

  138. Barthassat E, Afifi F, Konala P, Rasch H, Hirschmann MT. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) – a comparison of semi-quantitative versus 3D volumetric quantitative measurements. BMC Med Imaging. 2017;17(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cew CG, Lewis P, Middleton F, van den Wijngaard R, Deshaies A. Radionuclide arthrogram with SPECT/CT for the evaluation of mechanical loosening of hip and knee prostheses. Ann Nucl Med. 2010;24(10):735–43.

    Article  Google Scholar 

  140. Slevin O, Schmid FA, Schiapparelli F, Rasch H, Hirschmann MT. Increased in vivo patellofemoral loading after total knee arthroplasty in resurfaced patellae. Knee Surg Sports Traumatol Arthrosc. 2018;26:1805–10.

    Article  PubMed  Google Scholar 

  141. Al-Nabhani K, Michopoulou S, Allie R, Alkalbani J, Saad Z, Sajjan R, Syed R, Bomanji J. Painful knee prosthesis: can we help with bone SPECT/CT? Nucl Med Commun. 2014;35(2):182–8.

    Article  PubMed  Google Scholar 

  142. Helyar V, Mohan HK, Barwick T, Livieratos L, Gnanasegaran G, Clarke SE, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37:706–13.

    Article  PubMed  Google Scholar 

  143. Romer W, Nomayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med. 2006;47:1102–6.

    PubMed  Google Scholar 

  144. Sharma P, Singh H, Kumar R, Bal C, Thulkar S, Seenu V, et al. Bone scintigraphy in breast cancer: added value of hybrid SPECT-CT and its impact on patient management. Nucl Med Commun. 2012;33:139–47.

    Article  PubMed  Google Scholar 

  145. Utsunomiya D, Shiraishi S, Imuta M, Tomiguchi S, Kawanaka K, Morishita S, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology. 2006;238:264–71.

    Article  PubMed  Google Scholar 

  146. Ndlovu X, George R, Ellmann A, Warwick J. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun. 2010;31:659–65.

    Article  PubMed  Google Scholar 

  147. Horger M, Eschmann SM, Pfannenberg C, Vonthein R, Besenfelder H, Claussen CD, et al. Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol. 2004;183:655–61.

    Article  PubMed  Google Scholar 

  148. Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF. Characterization of focal bone lesions in the axial skeleton: performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol. 2007;188:W467–74.

    Article  PubMed  Google Scholar 

  149. Guezennec C, Keromnes N, Robin P, et al. Incremental diagnostic utility of systematic double-bed SPECT/CT for bone scintigraphy in initial staging of cancer patients. Cancer Imaging. 2017;17:16.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rager O, Nkoulou R, Exquis N, et al. Whole-body SPECT/CT versus planar bone scan with targeted SPECT/CT for metastatic workup. Biomed Res Int. 2017;2017:1–8.

    Article  Google Scholar 

  151. Cook GJR, Fogelman I. The role of positron emission tomography in skeletal disease. Semin Nucl Med. 2001;31:50–61.

    Article  CAS  PubMed  Google Scholar 

  152. Lonneux M, Borbath II, Berliere M, et al. The place of whole-body PET FDG for the diagnosis of distant recurrence of breast cancer. Clin Positron Imaging. 2000;3:45–9.

    Article  CAS  PubMed  Google Scholar 

  153. Ohta M, Tokuda Y, Suzuki Y, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun. 2001;22:875–9.

    Article  CAS  PubMed  Google Scholar 

  154. Cook GJ, Houston S, Rubens R, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–9.

    Article  CAS  PubMed  Google Scholar 

  155. Shreve PD, Grossman HB, Gross MD, et al. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199:751–6.

    Article  CAS  PubMed  Google Scholar 

  156. Morris MJ, Akhurst T, Osman I, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology. 2002;59:913–8.

    Article  PubMed  Google Scholar 

  157. Bury T, Barreto A, Daenen F, et al. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.

    Article  CAS  PubMed  Google Scholar 

  158. Gayed I, Vu T, Johnson M, et al. Comparison of bone and 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in the evaluation of bony metastases in lung cancer. Mol Imaging Biol. 2003;5:26–31.

    Article  PubMed  Google Scholar 

  159. Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999;40:1407–13.

    CAS  PubMed  Google Scholar 

  160. Schirrmeister H, Bommer M, Buck AK, et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29:361–6.

    Article  CAS  PubMed  Google Scholar 

  161. Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  162. Durie BG, Waxman AD, D’Agnolo A, et al. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43:1457–63.

    Google Scholar 

  163. Schirrmeister H, Guhlnamm A, Kotzerke J, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17:2381–9.

    Article  CAS  PubMed  Google Scholar 

  164. Even-Sapir E, Metser U, Flusser G. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45(2):272–8.

    PubMed  Google Scholar 

  165. Cook GJR, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927–33.

    Article  CAS  PubMed  Google Scholar 

  166. Schirrmeister H, Glatting G, Hetzel J, et al. Prospective evaluation of clinical value of planar bone scan, SPECT and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gnanasegaran, G., Cook, G. (2020). Nuclear Medicine Imaging Techniques of the Musculoskeletal System. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics