Skip to main content

Underwater Light Environment of Antarctic Seaweeds

  • Chapter
  • First Online:

Abstract

Antarctic seaweeds are highly shade-adapted organisms, which can photosynthesize under very dim light. This remarkable characteristic allows them colonizing over 30 m depths and surviving extended dark periods during the polar winter. On the other hand, they are well equipped to cope with high light stress, which points to a trade-off between shade adaptation and efficient UV stress tolerance. Optical properties of water determine both the underwater light climate for photosynthesis and the risk of seaweeds for UV exposure in their habitats. Thus, understanding the natural (spatial, temporal) and anthropogenic-driven changes in spectral transparency of water and factors governing it is fundamental in evaluating the state of seaweeds under current and future environmental scenarios. In the present chapter the aspects related to the optical properties determining the underwater habitat of Antarctic seaweeds are summarized, along with the potential changes in water optics as a result of climate change, ozone depletion and other environmental and emerging threats, and their interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abram NJ, Mulvaney R, Wolff EW, Triest J, Kipfstuhl S et al (2013) Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat Geosci 6:404–411. https://doi.org/10.1038/NGEO1787

    Article  CAS  Google Scholar 

  • Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, The Netherlands, pp 49–64

    Google Scholar 

  • Amaro E, Padeiro A, Mão de Ferro A, Mota AM, Leppe M et al (2015) Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island. Ant Mar Poll Bull 15:523–527

    Article  CAS  Google Scholar 

  • Amesbury MJ, Roland TP, Royles J, Hodgson DA, Convey P et al (2017) Widespread biological response to rapid warming on the Antarctic Peninsula. Curr Biol 27:1616–1622. https://doi.org/10.1016/j.cub.2017.04.034

    Article  CAS  PubMed  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Beaker BJ (2011) Defenses of polar macroalgae against herbivores and biofoulers. In: Wiencke C (ed) Biology of polar benthic algae. Walter de Gruyter GmBH & Co, KG, Berlin, New York, pp 101–120

    Google Scholar 

  • Andrady AL, Pandey KK, Heikkilä (2019) Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 18:804–825. https://doi.org/10.1039/c8pp90065e

  • Bais AF, Lucas RM, Bornman JF, Williamson CE, Sulzberger B et al (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP environmental effects assessment panel, update 2017. Photochem Photobiol Sci 17:127–179. https://doi.org/10.1039/c7pp90043k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais AF, Bernhard G, McKenzie RL, Aucamp PJ, Young AJ et al (2019) Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem Photobiol Sci 18:602–640. https://doi.org/10.1039/c8pp90059k

    Article  CAS  PubMed  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  PubMed  Google Scholar 

  • Bengtson Nash S (2011) Persistent organic pollutants in Antarctica: current and future research priorities. J Environ Monit 13:497–504. https://doi.org/10.1039/c0em00230e

    Article  CAS  PubMed  Google Scholar 

  • Berge J, Renaud P, Darnis G, Cottier F, Last K et al (2015) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271. https://doi.org/10.1016/j.pocean.2015.08.005

    Article  Google Scholar 

  • Bienfang PK, Szyper JOP, Okamoto MY, Noda EK (1984) Temporal and spatial variability of phytoplankton in a subtropical ecosystem. Limnol Oceanogr 29:527–539

    Article  Google Scholar 

  • Bischof K, Rautenberger R (2012) Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, Berlin, Heidelberg, pp 109–132

    Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt U, Karsten D et al (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166

    Article  CAS  Google Scholar 

  • Björn LO, Huovinen P (2015) Phototoxicity. In: Björn LO (ed) Photobiology: the science of light and life, 3rd edn. Springer, New York, pp 335–345

    Google Scholar 

  • Buma AGJ, de Boer MK, Boelen P (2001) Depth distributions of DNA damage in Antarctic marine phyto-and bacterioplankton exposed to summertime ultraviolet radiation. J Phycol 37:200–208

    Article  CAS  Google Scholar 

  • Burritt DJ, Lamare MD (2016) The cellular responses of marine algae and invertebrates to ultraviolet radiation, alone and in combination with other common abiotic stressors. In: Solan M, Whiteley NM (eds) Stressors in the marine environment. Oxford University Press, Oxford, pp 117–134

    Chapter  Google Scholar 

  • Calkins J, Thordardottir T (1980) The ecological significance of solar UV radiation on aquatic organisms. Nature 283:563–566

    Article  Google Scholar 

  • Campana GL, Zacher K, Fricke A, Molis M, Wulff A et al (2009) Drivers of colonization and succession in polar benthic macro-and microalgal communities. Bot Mar 52:655–667

    Article  Google Scholar 

  • Chipperfield MP, Bekki S, Dhomse S, Harris NRP, Hassler B et al (2017) Detecting recovery of the stratospheric ozone layer. Nature 549:211–218. https://doi.org/10.1038/nature23681

    Article  CAS  PubMed  Google Scholar 

  • Chu WL, Dang NL, Kok YY, Yap KSI, Phang SM, Convey P (2019) Heavy metal pollution in Antarctica and its potential impact on algae. Pol Sci 20:75–83. https://doi.org/10.1016/j.polar.2018.10.004

    Article  Google Scholar 

  • Clark GF, Stark JS, Palmer AS, Riddle MJ, Johnston EL (2017) The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS One 12(1):e0168391. https://doi.org/10.1371/journal.pone.0168391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton MN (1994) Evolution of the Antarctic benthic algal flora. J Phycol 30:897–904

    Article  Google Scholar 

  • Coljin F, Admiraal W, Baretta JW, Ruardij P (1987) Primary production in a turbid estuary, the Ems-Dollard: field and model studies. Cont Shelf Res 7:1405–1409

    Article  Google Scholar 

  • Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C et al (2014) Climate change and Southern Ocean ecosystems. I: how changes in physical habitats directly affect marine biota. Glob Chang Biol 20:3004–3025. https://doi.org/10.1111/gcb.12623

    Article  PubMed  Google Scholar 

  • Convey P (2010) Terrestrial biodiversity in Antarctica–recent advances and future challenges. Polar Sci 4(2):135–147

    Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  PubMed  Google Scholar 

  • Crame JA (1992) Evolutionary history of the polar regions. Hist Biol 6:37–60

    Google Scholar 

  • Cruces E, Huovinen P, Gómez I (2013) Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol 160:1–13

    Article  CAS  Google Scholar 

  • Cullen JJ, Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res 39:303–320

    Article  CAS  PubMed  Google Scholar 

  • Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650

    Article  CAS  PubMed  Google Scholar 

  • de Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Deregibus D, Quartino ML, Campana GL, Momo FR, Wiencke C, Zacher K (2016) Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol 39:153–166

    Article  Google Scholar 

  • Döhler G, Hegmeier E, Grigoleit E, Krause KD (1991) Impact of solar UV radiation on uptake of 15N-ammonia and 15N-nitrate by marine diatoms and natural phytoplankton. Biochem Physiol Pflanzen 187:293–303

    Article  Google Scholar 

  • Drew EA (1977) Physiology of photosynthesis and respiration in some Antarctic marine algae. Brit Ant Surv Bull 46:59–76

    Google Scholar 

  • Ducklow HW, Stukel MR, Eveleth R, Doney SC, Jickells T et al (2018) Spring–summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Phil Trans R Soc A 376:20170163

    Article  CAS  Google Scholar 

  • Dunton KH, Schonberg SV, Funk DW (2009) Interannual and spatial variability in light attenuation: evidence from three decades of growth in the arctic kelp, Laminaria solidungula. In: Proceedings of Smithsonian at the Poles Symposium, Smithsonian Institution, Washington, DC, 3–4 May 2007. Smithsonian Institute Scholarly Press, Washington, DC, pp 271–284

    Google Scholar 

  • Evans W, Mathis JT, Cross JN (2014) Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences 11:365–379

    Article  CAS  Google Scholar 

  • Farías S, Pérez Arisnabarreta S, Vodopivez C, Smichowski P (2002) Levels of essential and potentially toxic metals in Antarctic macro algae. Spectrochim Acta B 57:2133–2140

    Article  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Figueroa FL (2002) Bio-optical characteristics of Gerlache and Bransfield Strait waters during an Antarctic summer cruise. Deep-Sea Res II Top Stud Oceanogr 49:675–691

    Article  CAS  Google Scholar 

  • Flores-Molina MR, Rautenberger R, Muñoz P, Huovinen P, Gómez I (2016) Stress tolerance of the endemic Antarctic brown alga Desmarestia anceps to UV radiation and temperature is mediated by high concentrations of phlorotannins. Photochem Photobiol 92:455–466

    Google Scholar 

  • Fountain AG, Campbell JL, Schuur EAG, Stammerjohn SE, Williams MW, Ducklow HW (2012) The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62:405–415

    Article  Google Scholar 

  • Fountoulakis I, Bais AF, Tourpali K, Fragkos K, Misios S (2014) Projected changes in solar UV radiation in the Arctic and sub-Arctic Oceans: effects from changes in reflectivity, ice transmittance, clouds, and ozone. J Geophys Res Atmosp 119:8073–8090

    Article  Google Scholar 

  • Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50:443–450

    Article  CAS  Google Scholar 

  • Fritsen CH, Wirthlin ED, Momberg DK, Lewis MJ, Ackley SF (2011) Bio-optical properties of Antarctic pack ice in the early austral spring. Deep-Sea Res II 58:1052–1061. https://doi.org/10.1016/j.dsr2.2010.10.028

    Article  CAS  Google Scholar 

  • Galic N, Grimm V, Forbes VE (2017) Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants. Glob Chang Biol 23:2973–2989. https://doi.org/10.1111/gcb.13581

    Article  PubMed  Google Scholar 

  • Gao K, Häder DP (2017) Effects of ocean acidification and UV radiation on marine photosynthetic carbon fixation. In: Kumar M, Ralph P (eds) Systems biology of marine ecosystems. Springer, Cham, pp 235–250

    Chapter  Google Scholar 

  • Gattuso JP, Hansson L (2011) Ocean acidification: background and history. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 1–27

    Google Scholar 

  • Gerber S, Häder DP (1992) UV effects on photosynthesis, proteins and pigmentation in the flagellate Euglena gracilaris: biochemical and spectroscopic observations. Biochem Syst Ecol 20:485–492

    Article  CAS  Google Scholar 

  • Goes JI, Handa N, Taguchi S, Hama T (1994) Effect of UV-B radiation on the fatty acid composition of the marine phytoplankter Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser 114:259–274

    Article  CAS  Google Scholar 

  • Goes JI, Handa N, Taguchi S, Hama T, Saito H (1995) Impact of UV radiation on the production pattern and composition of dissolved free and combined amino acids in marine phytoplankton. J Plakton Res 17:1337–1362

    Article  CAS  Google Scholar 

  • Gómez I, Huovinen P (2015) Lack of physiological depth patterns in conspecifics of endemic Antarctic brown algae: a trade-off between UV stress tolerance and shade adaptation? PLoS One 10(8):e0134440. https://doi.org/10.1371/journal.pone.0134440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U et al (2009) Light and temperature demands of marine benthic micro-algae and seaweeds in the polar regions. Bot Mar 52:593–608

    Article  Google Scholar 

  • Gómez I, Navarro NP, Huovinen P (2019) Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Prog Oceanogr 174:17–27. https://doi.org/10.1016/j.pocean.2018.03.013

    Article  Google Scholar 

  • González PM, Deregibus D, Malanga G, Campana GL, Zacher K et al (2017) Oxidative balance in macroalgae from Antarctic waters. Possible role of Fe. J Exp Mar Biol Ecol 486:379–386. https://doi.org/10.1016/j.jembe.2016.10.018

    Article  CAS  Google Scholar 

  • Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T et al (2013) The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13:3271–3305. https://doi.org/10.5194/acp-13-3271-2013

    Article  CAS  Google Scholar 

  • Hanelt D, Jaramillo J, Nultsch W, Senger S, Westermeier R (1994) Photoinhibition as a regulative mechanisms of photosynthesis in marine algae of Antarctica. Ser Cient INACh 44:67–77

    Google Scholar 

  • Hargreaves BR (2003) Water column optics and penetration of UVR. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 59–105

    Google Scholar 

  • Hauptmann AL, Sicheritz-Ponten T, Cameron KA, Baelum J, Plichta DR et al (2017) Contamination of the Arctic reflected in microbial metagenomes from Greenland ice sheet. Environ Res Lett 12:074019

    Article  CAS  Google Scholar 

  • Helbling EW, Marguet ER, Villafañe VE, Holm-Hansen O (1995) Bacterioplankton viability in Antarctic waters as affected by solar ultraviolet radiation. Mar Ecol Prog Ser 126:293–298

    Article  Google Scholar 

  • Hessen DO, Tranvik LJ (eds) (1998) Aquatic humic substances: ecology and biogeochemistry. Springer, Berlin Heidelberg

    Google Scholar 

  • Hodson A, Nowak A, Sabacka M, Jungblut A, Navarro F et al (2017) Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nat Commun 8:14499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann LC, Bischof K (2014) Ocean acidification effects on calcifying macroalgae. Mar Ecol Prog Ser 22:261–279

    Google Scholar 

  • Holm-Hansen O, Lubin D, Helbling WE (1993) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, pp 379–425

    Google Scholar 

  • Huot Y, Jeffrey WH, Davis RF, Cullen JJ (2000) Damage to DNA in bacterioplankton: a model of damage by ultraviolet radiation and its repair as influenced by vertical mixing. Photochem Photobiol 72:62–74

    Article  CAS  PubMed  Google Scholar 

  • Huovinen P, Gómez I (2011) Spectral attenuation of solar radiation in Patagonian fjord and coastal waters and implications for algal photobiology. Cont Shelf Res 31:254–259

    Article  Google Scholar 

  • Huovinen P, Gómez I (2013) Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient. Polar Biol 36:1319–1332. https://doi.org/10.1007/s00300-013-1351-3

    Article  Google Scholar 

  • Huovinen PS, Penttilä H, Soimasuo MR (2003) Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51:205–214

    Article  CAS  PubMed  Google Scholar 

  • Huovinen P, Gómez I, Lovengreen C (2006) A five-year study of solar ultraviolet radiation in Southern Chile (39° S): potential impact on physiology of coastal marine algae? Photochem Photobiol 82:515–522

    Google Scholar 

  • Huovinen P, Leal P, Gómez I (2010) Interacting effects of copper, nitrogen and ultraviolet radiation on the physiology of three south Pacific kelps. Mar Freshw Res 61:330–341

    Article  CAS  Google Scholar 

  • Huovinen P, Ramírez J, Gómez I (2016) Underwater optics in sub-Antarctic and Antarctic coastal ecosystems. PLoS One 11(5):e0154887. https://doi.org/10.1371/journal.pone.0154887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huovinen P, Ramírez J, Gómez I (2018) Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS J Photogram Rem Sens 146:507–517

    Article  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251

    Article  CAS  PubMed  Google Scholar 

  • Iken K, Quartino ML, Barrera-Oro E, Palermo J, Wiencke C, Brey T (1998) Trophic relations between macroalgae and herbivores. Ber Polarforsch 299:258–262

    Google Scholar 

  • IPCC (2019) Special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/srocc/download-report/

  • Jerosch K, Scharf FK, Deregibus D, Campana GL, Zacher K et al (2019) Ensemble modeling of Antarctic macroalgal habitats exposed to glacial melt in a Polar Fjord. Front Ecol Evol 7:207. https://doi.org/10.3389/fevo.2019.00207

    Article  Google Scholar 

  • Jewett L, Romanou A (2017) Ocean acidification and other ocean changes. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC et al (eds) Climate science special report: fourth national climate assessment, vol I. U.S. Global Change Research Program, Washington, DC, pp 364–392

    Google Scholar 

  • Johnston EL, Connell SD, Irving AD, Pile AJ, Gillanders BM (2007) Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke’s Land. Polar Biol 30:781–788

    Article  Google Scholar 

  • Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166

    Article  CAS  Google Scholar 

  • Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS et al (2009) Physiological responses of polar benthic algae to ultraviolet radiation. Rev Bot Mar 52:639–654. https://doi.org/10.1515/BOT.2009.077

    Article  CAS  Google Scholar 

  • Khairy MA, Luek JL, Dickhut R, Lohmann R (2016) Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula. Environ Pollut 216:304–313. https://doi.org/10.1016/j.envpol.2016.05.092

    Article  CAS  PubMed  Google Scholar 

  • Kieber DJ, McDaniel J, Mopper J (1989) Photochemical source of biological substrates in seawater: implications for carbon cycling. Nature 341:637–639

    Article  CAS  Google Scholar 

  • Kieber DJ, Peake BM, Scully NM (2003) Reactive oxygen species in aquatic ecosystems. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 251–290

    Google Scholar 

  • Kirk JTO (ed) (2011) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, south Shetlands). J Mar Syst 4:289–301

    Article  Google Scholar 

  • Klöser H, Quartino ML, Wiencke C (1996) The distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333:1–17

    Article  Google Scholar 

  • Kuttippurath J, Nair PJ (2017) The signs of Antarctic ozone hole recovery. Sci Rep 7:585. https://doi.org/10.1038/s41598-017-00722-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda ALF, Rodrigues LS, van Sebille E, Rodrigues FL, Ribeiro L et al (2019) Plastics in sea surface waters around the Antarctic Peninsula. Sci Rep 9:3977. https://doi.org/10.1038/s41598-019-40311-4

  • Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA et al (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49. https://doi.org/10.1038/nature22996

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Lamare MD, Barker MF (2004) Transmission of ultraviolet radiation through the Antarctic annual sea ice and its biological effects on sea urchin embryos. Limnol Oceanogr 49:1957–1963

    Article  Google Scholar 

  • Lutz S, Anesio AM, Villar J, Benning LG (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 89:402–414. https://doi.org/10.1111/1574-6941.12351

    Article  CAS  PubMed  Google Scholar 

  • Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3:56–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Madronich (1994) Increases in biologically damaging UV-B radiation due to stratospheric ozone reductions: a brief review. Arch Hydrobiol Beih Ergebn Limnol 43:17–30

    Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B Biol 46:5–19

    Article  CAS  Google Scholar 

  • Madronich S, Flocke S (1999) The role of solar radiation in atmospheric chemistry. In: Boule P (ed) Environmental photochemistry. Springer-Verlag, Berlin, pp 1–26

    Google Scholar 

  • McMinn A, Martin A (2013) Dark survival in a warming world. Proc R Soc B 280:20122909. https://doi.org/10.1098/rspb.2012.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. PNAS 105(48):18860–18864

    Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep-Sea Res 38:1009–1028

    Article  Google Scholar 

  • Mitchell DL, Karentz D (1993) The induction and repair of DNA photodamage in the environment. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, pp 345–377

    Google Scholar 

  • Mobley CD (2015) Underwater light. In: Björn LO (ed) Photobiology: the science of light and life, 3rd edn. Springer, New York Springer, pp 77–84

    Chapter  Google Scholar 

  • Molina MJ, Rowland RS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature 249:810–812

    Article  CAS  Google Scholar 

  • Morris DP, Hargreaves BP (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42:239–249

    Article  CAS  Google Scholar 

  • Na G, Liu C, Wang Z, Ge L, Ma X, Yao Z (2011) Distribution and characteristic of PAHs in snow of Fildes Peninsula. J Environ Sci 23:1445–1451

    Article  CAS  Google Scholar 

  • Navarro NP, Huovinen P, Gómez I (2019) Photosynthetic characteristics of geographically disjunct seaweeds: a case study on the early life stages of Antarctic and Subantarctic species. Prog Oceanogr 174:28–36. https://doi.org/10.1016/j.pocean.2018.11.001

    Article  Google Scholar 

  • Neale PJ (2000) Spectral weighting functions for quantifying effects of UV radiation in marine ecosystems. In: de Mora S, Demers S, Vernet M (eds) Effects of UV radiation in the marine environment, vol 10. Cambridge University Press, Environmental Chemical Series, pp 72–100

    Google Scholar 

  • Neale PJ, Davis RF, Cullen JJ (1998) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Article  CAS  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA et al (2009) The toxicology of climate change: environmental contaminants in a warming world. Rev Env Int 35:971–986

    Article  CAS  Google Scholar 

  • Nuñez-Pons L, Avila C, Romano G, Verde C, Giordano D (2018) UV-protective compounds in marine organisms from the Southern Ocean. Rev Mar Drugs 16:336. https://doi.org/10.3390/md16090336

    Article  CAS  Google Scholar 

  • Oduor S, Schagerl M (2007) Phytoplankton primary productivity characteristics in response to photosynthetically active radiation in three Kenyan Rift Valley saline-alkaline lakes. J Plankton Res 29:1041–1050. https://doi.org/10.1093/plankt/fbm078

    Article  CAS  Google Scholar 

  • Padeiro A, Amaro E, dos Santos MMC, Araujo MF, Gomes SS et al (2016) Trace element contamination and availability in the Fildes Peninsula, King George Island, Antarctica. Environ Sci: Processes Impacts 18:648–657

    CAS  Google Scholar 

  • Préndez M, Barra C, Toledo C, Richter B (2011) Alkanes and polycyclic aromatic hydrocarbons in marine surficial sediment near Antarctic stations at Fildes Peninsula. King George Island Antarctic Sci 23:578–588

    Article  Google Scholar 

  • Quartino M, Zaixso H, Boraso de Zaixso A (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197

    Article  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8(3):e58223. https://doi.org/10.1371/journal.pone.0058223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautenberger R, Huovinen P, Gómez I (2015) Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae. Mar Biol 162:1087–1097

    Article  CAS  Google Scholar 

  • Robinson D, Arrigo K, Iturriaga R, Sullivan C (1995) Microalgal light-harvesting in extreme low-light environments in McMurdo Sound, Antarctica. J Phycol 31:508–520

    Article  Google Scholar 

  • Roleda MY, Hurd CL (2012) Seaweed responses to ocean acidification. In: Wiencke C, Bischof K (eds) Seaweed biology: insights into ecophysiology, ecology and utilization. Springer, Berlin, pp 407–431

    Google Scholar 

  • Roleda MY, Wiencke C, Lüder UH (2006) Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage and germination in zoospores of Arctic Saccorhiza dermatodea. J Exp Bot 57:3847–4856

    Article  CAS  PubMed  Google Scholar 

  • Runcie JW, Riddle MJ (2007) Photosynthesis of marine macroalgae in ice-covered and ice free environments in East Antarctica. Eur J Phycol 41:223–233

    Article  CAS  Google Scholar 

  • Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol 47:744–752

    Article  PubMed  Google Scholar 

  • Schiedek D, Sundelin B, Readman JW, Macdonald RW (2007) Interactions between climate change and contaminants. Rev Mar Poll Bull 54:1845–1856

    Article  CAS  Google Scholar 

  • Schindler DW, Curtis PJ, Parker BP, Stainton MP (1996) Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379:705–708

    Article  CAS  Google Scholar 

  • Schloss IR, Ferreyra GA (2001) Primary production, light and vertical mixing in Potter Cove, a shallow bay in the maritime Antarctic. Polar Biol 25:41–48

    Article  Google Scholar 

  • Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA (2017) Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences. Mar Ecol Prog Ser 581:45–56

    Article  CAS  Google Scholar 

  • Schwarz AM, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799

    Article  Google Scholar 

  • Schwarz A-M, Hawes I, Andrew N, Mercer S, Cummings V, Thrush S (2005) Primary production potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Mar Ecol Prog Ser 294:131–140

    Article  CAS  Google Scholar 

  • Schoenrock KM, Schram JB, Amsler CA, McClintock JB, Angus RA (2015) Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Mar Biol 162:377–389

    Google Scholar 

  • Scully NM, Lean DRS (1994) The attenuation of ultraviolet radiation in temperate lakes. Arch Hydobiol Ergebn Limnol 43:135–144

    Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci U S A 71:3363–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RC, Baker KS (1979) Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem Photobiol 29:311–323

    Article  CAS  Google Scholar 

  • Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353(6296):269–274. https://doi.org/10.1126/science.aae0061

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Ivy D, Gupta M, Bandoro J, Santer B et al (2017) Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. J Geophys Res Atmos 122:8940–8950. https://doi.org/10.1002/2017JD026719

    Article  CAS  Google Scholar 

  • Sulzberger B, Austin AT, Cory RM, Zepp RG, Paul ND (2019) Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem Photobiol Sci 18:747–774. https://doi.org/10.1039/c8pp90063a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taskjelle T, Hudson SR, Granskog MA, Nicolaus M, Lei R et al (2016) Spectral albedo and transmittance of thin young Arctic sea ice. J Geophys Res Oceans 121:540–553. https://doi.org/10.1002/2015JC011254

    Article  Google Scholar 

  • Tedesco M, Doherty S, Fettweis X, Alexander P, Jeyaratnam J, Stroeve J (2016) The darkening of the Greenland ice sheets: trends, drivers, and projections (1981–2100). Cryosphere 10:477–496

    Article  Google Scholar 

  • Tedetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397

    Article  CAS  PubMed  Google Scholar 

  • Tyler JE (1975) The in situ quantum efficiency of natural phytoplankton populations. Limnol Oceanogr 20:976–980

    Article  Google Scholar 

  • Valdivia N, Díaz MJ, Garrido I, Gómez I (2015) Consistent richness-biomass relationship across environmental gradients in a marine macroalgal-dominated subtidal community on the Western Antarctic Peninsula. PLoS One 10(9):e0138582. https://doi.org/10.1371/journal.pone.0138582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan DG, Doake CSM (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379:328–331

    Article  CAS  Google Scholar 

  • Vecchiato M, Argiriadis E, Zambon S, Barbante C, Toscano G et al (2015) Persistent Organic Pollutants (POPs) in Antarctica: occurrence in continental and coastal surface snow. Microchem J 119:75–82. https://doi.org/10.1016/j.microc.2014.10.010

    Article  CAS  Google Scholar 

  • Vincent WF, Belzile C (2003) Biological UV exposure in the polar oceans: Arctic-Antarctic comparisons. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, The Netherlands, pp 176–181

    Google Scholar 

  • Vincent WF, Neale PJ (2000) Mechanisms of UV damage to aquatic organisms. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment, vol. 10. Cambridge University Press, Cambridge, pp 149–176

    Chapter  Google Scholar 

  • Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12

    Article  CAS  Google Scholar 

  • Wadham JL, Hawkings JR, Tarasov L, Gregoire LJ, Spencer RGM et al (2019) Ice sheets matter for the global carbon cycle. Nat Commun 10:3567. https://doi.org/10.1038/s41467-019-11394-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl M, Molis M, Davis A, Dobretsov S, Dürr ST et al (2004) UV effects that come and go: a global comparison of marine benthic community level impacts. Glob Chang Biol 10:1962–1972. https://doi.org/10.1111/j.1365-2486.2004.00872.x

    Article  Google Scholar 

  • Waller CL, Griffiths HJ, Waluda CM, Thorpe SE, Loaiza I et al (2017) Microplastics in the Antarctic marine system: an emerging area of research. Review. Sci Total Environ 598:220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283

    Article  CAS  PubMed  Google Scholar 

  • Wania F, Westgate JN (2008) On the mechanisms of mountain cold-trapping of organic chemicals. Environ. Sci Technol 42:9092–9098

    Article  CAS  Google Scholar 

  • Weiler CS, Penhale PA (eds) (1994) Ultraviolet radiation in Antarctica: measurements and biological effects, vol 62. American Geophysical Union, Antarctic Research Series, Washington DC

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C: N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Article  Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M et al (2000) Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229

    Article  Google Scholar 

  • Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463

    Article  Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar 52:585–592

    CAS  Google Scholar 

  • Williamson CE, Neale PJ, Grad G, de Lange HJ, Hargreaves BR (2001) Beneficial and detrimental effects of UV on aquatic organisms: implications of spectral variation. Ecol Appl 11:1843–1857

    Article  Google Scholar 

  • Williamson CE, Madronich S, Lal A, Zepp RG, Lucas RM et al (2017) Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci Rep 7:13033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson CE, Neale PJ, Hylander S, Rose KC, Figueroa FL et al (2019) The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem Photobiol Sci 18:717–746. https://doi.org/10.1039/c8pp90062k

  • Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Levesque LMJ et al (2006) Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio 35:388–401

    Article  CAS  PubMed  Google Scholar 

  • Yan ND, Keller W, Scully NM, Lean DRS, Dillon PJ (1996) Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381:141–143

    Article  CAS  Google Scholar 

  • Zacher KD, Hanelt D, Wiencke C, Wulff A (2007a) Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage: a long-term field study. Polar Biol 30:1203–1212

    Article  Google Scholar 

  • Zacher K, Roleda MY, Hanelt D, Wiencke C (2007b) UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta 225:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52:483–490

    Article  Google Scholar 

  • Zepp RG (2003) Solar UVR and aquatic carbon, nitrogen, sulfur and metals cycles. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 137–184

    Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of the Admiralty Bay (King George Island, Antarctica). Pol Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgments

The funding provided by CONICYT (through Projects Anillo ART1101, FONDECYT 1161129 and FONDAP 15150003) and by Instituto Antártico Chileno (INACH; Grant T-20-09) to carry out our research in the Antarctic is greatly acknowledged. We are also grateful to the members of our research group in Universidad Austral de Chile and the staff of the Instituto Antártico Chileno for their invaluable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirjo Huovinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huovinen, P., Gómez, I. (2020). Underwater Light Environment of Antarctic Seaweeds. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_7

Download citation

Publish with us

Policies and ethics