Skip to main content

Comparative Phylogeography of Antarctic Seaweeds: Genetic Consequences of Historical Climatic Variations

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

In the Southern Ocean, rapid climatic fluctuations during the Quaternary are thought to have induced range contractions and bottlenecks, which drastically impacted marine communities. For photosynthetic macroalgae that are restricted to very shallow waters, survival in deepwater refugia is not possible. Comparing pattern of distribution of genetic diversity using sequences of mitochondrial and chloroplast markers in distinct species of green, brown and red macroalgae, we sought to detect common responses to the effect of these glacial cycles. All the Antarctic macroalgae were characterized by very low genetic diversity, absence of genetic structure and significant signatures of recent population expansion. The eight studied species seem to have barely survived glacial events in situ, in a unique refugium from which they recolonized their current distribution area. We propose that polynyas or areas showing long-term geothermal activity along Antarctic continental margins or peri-Antarctic islands could be good candidate as glacial refugium, but more variable genetic markers will be needed to precisely pinpoint its location. Common haplotypes, scattered over hundreds or even thousands of kilometres of coastline, point out to long-distance dispersal of fronds drifting on the strong oceanic currents in the region as the main mechanism of postglacial expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528

    Article  PubMed  Google Scholar 

  • Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 22:49–70

    Article  Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-Joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barker P, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev 66:143–162

    Article  Google Scholar 

  • Barnes DK, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Bentley MJ, Ó Cofaigh CO, Anderson JB, Conway H, Davies B, Graham AG et al (2014) A community-based geological reconstruction of Antarctic ice sheet deglaciation since the Last Glacial Maximum. Quat Sci Rev 100:1–9

    Google Scholar 

  • Billard E, Reyes J, Mansilla A, Faugeron S, Guillemin ML (2015) Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Polar Biol 38:2021–2034

    Article  Google Scholar 

  • Bortolotto E, Bucklin A, Mezzavilla M, Zane L, Patarnello T (2011) Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet 12:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Caccavo JA, Papetti C, Wetjen M, Knust R, Ashford JR, Zane L (2018) Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica). Sci Rep 8:17856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheang CC, Chu KH, Fujita D, Yoshida G, Hiraoka M, Critchley A, Choi HG, Duan D, Serisawa Y, Ang PO Jr (2010) Low genetic variability of Sargassum muticum (Phaeophyceae) revealed by a global analysis of native and introduced populations. J Phycol 46:1063–1074

    Article  Google Scholar 

  • Clark GF, Marzinelli EM, Fogwill CJ, Turney CS, Johnston EL (2015) Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol 38:1213–1222

    Article  Google Scholar 

  • Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota, vol 47. The Geol Soc Spec Publ, London, pp 253–268

    Google Scholar 

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Phil Trans R Soc Lond B 338:299–309

    Article  Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3

    Article  PubMed  Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149

    Article  Google Scholar 

  • Convey P, Gibson JA, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL, Stevens MI (2008) Antarctic terrestrial life–challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Convey P, Stevens M, Hodgson D, Smellie J, Hillenbrand C, Barnes D, Clarke A, Pugh P, Linse K, Cary S (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Cook AJ, Holland PR, Meredith MP, Murray T, Luckman A, Vaughan DG (2016) Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353:283–286

    Article  CAS  PubMed  Google Scholar 

  • Crame JA (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63:1–14

    Article  Google Scholar 

  • Crame JA (2018) Key stages in the evolution of the Antarctic marine fauna. J Biogeogr 45:986–994

    Article  Google Scholar 

  • Dalziel IWD, Lawver LA, Pearce JA, Barker PF, Hastie AR, Barfod DN, Schenke HW, Davis MB (2013) A potential barrier to deep Antarctic circumpolar flow until the late Miocene? Geology 41:947–950

    Article  CAS  Google Scholar 

  • Dambach J, Thatje S, Rödder D, Basher Z, Raupach MJ (2012) Effects of late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS One 7:e46283

    Google Scholar 

  • Davies B, Hambrey M, Smellie J, Carrivick J, Glasser N (2012) Antarctic Peninsula ice sheet evolution during the Cenozoic Era. Quat Sci Rev 31:30–66

    Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Sci 10:1–216

    Google Scholar 

  • Díaz A, Gerard K, González-Wevar C, Maturana C, Féral JP, David B, Saucède T, Poulin E (2018) Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: the role of the last glaciation. PLoS One 13:e0197611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubrasquet H, Reyes J, Sanchez RP, Valdivia N, Guillemin ML (2018) Molecular-assisted revision of red macroalgal diversity and distribution along the Western Antarctic Peninsula and South Shetland Islands. Cryptogamie Algol 39:409–430

    Article  Google Scholar 

  • Excoffier L, Lisher H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:56

    Article  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Famà P, Wysor B, Kooistra WH, Zuccarello GC (2002) Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. J Phycol 38:1040–1050

    Article  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of Subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci 106:3249–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    Article  PubMed  Google Scholar 

  • Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM (2013) Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS One 8:e69138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci 111:5634–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Chang 8:704

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gäbler-Schwarz S, Medlin LK, Leese F (2015) A puzzle with many pieces: the genetic structure and diversity of Phaeocystis antarctica Karsten (Prymnesiophyta). Eu. J Phycol 50:112–124

    Article  Google Scholar 

  • Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896

    Article  Google Scholar 

  • González-Wevar CA, Díaz A, Gerard K, Poulin E, Cañete JI (2012) Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev Chil Hist Nat 85:445–456

    Google Scholar 

  • González-Wevar CA, Saucède T, Morley SA, Chown SL, Poulin E (2013) Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. Mol Ecol 22:5221–5236

    Google Scholar 

  • González-Wevar CA, Hüne M, Segovia NI, Nakano T, Spencer HG, Chown SL, Saucède T, Johnstone G, Mansilla A, Poulin E (2017) Following the Antarctic Circumpolar Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. J Biogeogr 44:861–874

    Article  Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Natl Acad Sci 104:16576–16580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths HJ, Waller CL (2016) The first comprehensive description of the biodiversity and biogeography of Antarctic and Sub-Antarctic intertidal communities. J Biogeogr 43:1143–1155

    Article  Google Scholar 

  • Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M (2008) Genetic variation in wild and cultivated populations of the haploid–diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution 62:1500–1519

    Article  PubMed  Google Scholar 

  • Guillemin ML, Valero M, Faugeron S, Nelson W, Destombe C (2014) Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS One 9:e114039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillemin ML, Dubrasquet H, Reyes J, Valero M (2018) Comparative phylogeography of six red algae along the Antarctic Peninsula: extreme genetic depletion linked to historical bottlenecks and recent expansion. Polar Biol 41:827–837

    Article  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    Article  CAS  PubMed  Google Scholar 

  • Halanych KM, Mahon AR (2018) Challenging dogma concerning biogeographic patterns of Antarctica and the Southern Ocean. Ann Rev Ecol Evol S 49:355–378

    Article  Google Scholar 

  • Hallatschek O, Nelson DR (2010) Life at the front of an expanding population. Evolution 64:193–206

    Article  PubMed  Google Scholar 

  • Hemery LG, Eléaume M, Roussel V, Améziane GC, Steinke D, Cruaud C, Couloux A, Wilson NG (2012) Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Mol Ecol 21:2502–2518

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B 359:183–195

    Article  CAS  Google Scholar 

  • Hiller A, Wand U, Kämpf H, Stackebrandt W (1988) Occupation of the Antarctic Continent by petrels during the past 35000 years: inferences from a 14C study of stomach oil deposits. Polar Biol 9:69–77

    Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Marina 52:509–534

    Article  Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’(LGM). Earth Sci Rev 125:171–198

    Article  Google Scholar 

  • Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol 139:57–62

    Google Scholar 

  • Jueterbock A, Coyer JA, Olsen JL, Hoarau G (2018) Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae). BMC Evol Biol 18:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  PubMed  Google Scholar 

  • Kemp A, Grigorov I, Pearce R, Naveira Garabato A (2010) Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quat Sci Rev 29:1993–2009

    Article  Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    Article  CAS  Google Scholar 

  • Klages JP, Kuhn G, Hillenbrand CD, Smith JA, Graham AG, Nitsche FO, Frederichs T, Jernas PE, Gohl K, Wacker L (2017) Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS One 12:e0181593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci 109:14052–14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylogenet Evol 44:634–648

    Article  CAS  PubMed  Google Scholar 

  • Lange M, Chen YQ, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Article  Google Scholar 

  • Larter RD, Anderson JB, Graham AGC, Gohl K, Hillenbrand CD, Jakobsson M et al (2014) Reconstruction of changes in the Amundsen Sea and Bellingshausen sea sector of the West Antarctic ice sheet since the last glacial maximum. Quat Sci Rev 100:55–86

    Article  Google Scholar 

  • Le Cam S, Daguin-Thiébaut C, Bouchemousse S, Engelen AH, Mieszkowska N, Viard F (2019) A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evol Appl 00:1–15 DOI: 10.1111/eva.12837

    Google Scholar 

  • Lecointre G, Améziane N, Boisselier MC, Bonillo C, Busson F, Causse R et al (2013) Is the species flock concept operational? The Antarctic shelf case. PLoS One 8:e68787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linse K, Griffiths HJ, Barnes DK, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep Sea Res Pt II 53:985–1008

    Article  Google Scholar 

  • Loeb V (2007) Environmental variability and the Antarctic marine ecosystem. In: Vasseur DA, McCann KS, Vasseur DA (eds) The impact of environmental variability on ecological systems. Springer, Dordrecht, pp 197–225

    Chapter  Google Scholar 

  • Macaya EC, López B, Tala F, Tellier F, Thiel M (2016) Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 97–130

    Chapter  Google Scholar 

  • Macaya EC, Tala F, Hinojosa I, Rothäusler E (2020) Detached seaweeds as important dispersal agents across the Southern Ocean. In: Gómez I, Huovinen P (eds) Antarctic seaweeds: diversity, adaptation and ecosystem services. Springer, Cham, Switzerland, pp 59–75

    Google Scholar 

  • Mackensen A (2004) Changing Southern Ocean paleocirculation and effects on global climate. Antarct Sci 16:369–386

    Article  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122

    Article  PubMed  Google Scholar 

  • McCulloch RD, Bentley MJ, Purves RS, Hulton NRJ, Sugden DE, Clapperton CM (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Sci 15:409–417

    Article  Google Scholar 

  • Moniz MB, Rindi F, Novis PM, Broady PA, Guiry MD (2012) Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J Phycol 48:940–955

    Article  PubMed  Google Scholar 

  • Montecinos A, Broitman BR, Faugeron S, Haye PA, Tellier F, Guillemin ML (2012) Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evol Biol 12:01–97

    Google Scholar 

  • Moon KL, Chown SL, Fraser CI (2017) Reconsidering connectivity in the sub-Antarctic. Biol Rev 92:2164–2181

    Article  PubMed  Google Scholar 

  • Mystikou A, Peters AF, Asensi AO, Fletcher KI, Brickle P, van West P, Convey P, Küpper FC (2014) Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol 37:1607–1619

    Article  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci 109:3434–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M (2016) Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 279–308

    Chapter  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Funnell GA, Schwarz AM, Andrew NL, Hawes I (2004) Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biol 27:482–494

    Article  Google Scholar 

  • O’Cofaigh C, Davies BJ, Livingstone SJ, Smith JA, Johnson JS, Hocking EP et al (2014) Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat Sci Rev 100:87–110

    Article  Google Scholar 

  • Ocaranza-Barrera P, González-Wevar CA, Guillemin ML, Rosenfeld S, Mansilla A (2019) Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. J Appl Phycol 31:939–949

    Article  CAS  Google Scholar 

  • Oliveira MC, Pellizzari F, Medeiros AS, Yokoya NS (2020) Diversity of Antarctic seaweeds. In: Gómez I, Huovinen P (eds) Antarctic seaweeds: diversity, adaptation and ecosystem services. Springer, Cham, Switzerland, pp 23-39

    Google Scholar 

  • Paillard D, Parrenin F (2004) The Antarctic ice sheet and the triggering of deglaciations. Earth Planet Sci Lett 227:263–271

    Article  CAS  Google Scholar 

  • Pearse JS, Mooi R, Lockhart SJ, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles: contributions to international polar year science. Smithsonian Institution Scholarly Press, Washington, DC, pp 181–196

    Chapter  Google Scholar 

  • Pellizzari F, Silva MC, Silva EM, Medeiros A, Oliveira MC, Yokoya NS, Pupo D, Rosa LH, Colepicolo P (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol 40:1671–1685

    Article  Google Scholar 

  • Peters AF, Ramírez ME, Rülke A (2000) The phylogenetic position of the subantarctic marine macroalga Desmarestia chordalis (Phaeophyceae) inferred from nuclear ribosomal ITS sequences. Polar Biol 23:95–99

    Article  Google Scholar 

  • Pointing SB, Buedel B, Convey P, Gillman L, Koerner C, Leuzinger S, Vincent WF (2015) Biogeography of photoautotrophs in the high polar biome. Front Plant Sci 6:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulin E, González-Wevar C, Díaz A, Gérard K, Hüne M (2014) Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob Planet Chang 123:392–399

    Article  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23:564–571

    Article  PubMed  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL, Latorre GEJ, Momo FR (2013) Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One 8:e58223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quartino ML, Saravia LA, Campana GL, Deregibus D, Matula CV, Boraso AL, Momo FR (2020) Production and biomass of seaweeds in newly ice-free areas: implications for coastal processes in a changing Antarctic environment. In: Gómez I, Huovinen P (eds) Antarctic seaweeds: diversity, adaptation and ecosystem services. Springer, Cham, Switzerland, pp 155–168

    Google Scholar 

  • Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F (2010) Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol 157:1783–1797

    Article  CAS  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semi purification and ice recrystallization inhibition activity of ice active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    Article  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Roberts J, McCave IN, McClymont EL, Kender S, Hillenbrand CD, Matano R, Hodell DA, Peck VL (2017) Deglacial changes in flow and frontal structure through the Drake Passage. Earth Planet Sci Lett 474:397–408

    Article  CAS  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc Lond B 360:1879–1888

    Article  CAS  Google Scholar 

  • Saunders GW (2008) A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea–Neodilsea complex and Weeksia. Botany 86:773–789

    Article  CAS  Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430

    Article  CAS  PubMed  Google Scholar 

  • Scher HD, Whittaker JM, Williams SE, Latimer JC, Kordesch WE, Delaney ML (2015) Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523:580

    Article  CAS  PubMed  Google Scholar 

  • Sijp WP, von der Heydt AS, Dijkstra HA, Flögel S, Douglas P, Bijl PK (2014) The role of ocean gateways on cooling climate on long time scales. Glob Planet Chang 119:1–22

    Article  Google Scholar 

  • Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, De Reviers B, Rousseau F (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Simms AR, Milliken KT, Anderson JB, Wellner JS (2011) The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quat Sci Rev 30:1583–1601

    Article  Google Scholar 

  • Soler-Membrives A, Linse K, Miller KJ, Arango CP (2017) Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R Soc Open Sci 4:170615

    Article  PubMed  PubMed Central  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  • Spalding HL, Amado-Filho GM, Bahia RG, Ballantine DL, Fredericq S, Leichter JJ, Nelson WA, Slattery M, Tsuda RT (2019) Macroalgae. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, Cham, pp 507–536

    Chapter  Google Scholar 

  • Sromek L, Lasota R, Wolowicz M (2015) Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina antarctica and Arctic Limacina helicina. Mar Ecol Prog Ser 525:143–152

    Article  Google Scholar 

  • Stuart KM, Long DG (2011) Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res Pt II 58:1285–1300

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terauds A, Chown SL, Morgan F, Peat H, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Divers Distrib 18:726–741

    Article  Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Thatje S, Hillenbrand CD, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692

    Article  PubMed  Google Scholar 

  • Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol 17:5104–5117

    Article  CAS  PubMed  Google Scholar 

  • Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiebaut C, Tellier F (2011) Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cah Biol Mar 52:467

    Google Scholar 

  • Van Oppen MJH, Olsen JL, Stam WT, van Denhoek C, Wiencke C (1993) Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386

    Article  Google Scholar 

  • Waters JM, Fraser CI, Hewitt GM (2013) Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol 28:78–85

    Article  PubMed  Google Scholar 

  • White DA, Bennike O, Melles M, Berg S, Binnie SA (2018) Was South Georgia covered by an ice cap during the Last Glacial Maximum? In: Siegert MJ, SSR J, White DA (eds) Exploration of subsurface Antarctica: uncovering past changes and modern processes. The Geological Society of London, pp 49–59

    Google Scholar 

  • Wiencke C, Clayton MN (ed) (2002) Antarctic seaweeds. ARG Gantner Verlag, KG Ruggell, p 239

    Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126

    Article  Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Chapter 5.1. Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Dudekem DAC et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73

    Google Scholar 

  • Wilson NG, Schrödl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984

    Article  PubMed  Google Scholar 

  • Yang EC, Peters AF, Kawai H, Stern R, Hanyuda T, Bárbara I, Müller DG, Strittmatter M, van Reine WFP, Küpper FC (2014) Ligulate Desmarestia (Desmarestiales, Phaeophyceae) revisited: D. japonica sp. nov. and D. dudresnayi differ from D. ligulata. J Phycol 50:149–166

    Article  CAS  PubMed  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding by Instituto Antártico Chileno (INACH) T_16-11 and RG_15-16 and the Centro FONDAP IDEAL no. 15150003 is gratefully acknowledged. At King George Island, sampling of Monostroma hariotii and Himantothallus grandifolius was done with the help of the Project Anillo ART1101 from Conicyt-Chile. The authors thank P. Brunning, J. L. Kappes, T. Heran, Y. Henriquez and L. Vallejos for their help in the field. The authors would also like to thank the Chilean Navy (especially the captain and crew of the ships Almirante Oscar Viel and Lautaro), the staff from the Chilean Army in the O’Higgins base and the Air Force of Chile (FACh) for the logistic support of our fieldwork in Subantarctica and Antarctica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Guillemin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guillemin, ML. et al. (2020). Comparative Phylogeography of Antarctic Seaweeds: Genetic Consequences of Historical Climatic Variations. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_6

Download citation

Publish with us

Policies and ethics