Skip to main content

Conditional Convolutional Generative Adversarial Networks Based Interactive Procedural Game Map Generation

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1129))

Abstract

There is a strong need for a procedural map design system which can generate complex detail game maps but with simple user control. We propose an interactive real-time design system made with Conditional Generative Adversarial Network and Convolutional Neural Network. This system takes user-defined game-play area map as input, and generate a complex game map with the same design pattern as training samples automatically. It can output an abstract label map which can be used in other procedural generator called theme renderer. The impacts of our obtained results show the potential of deep learning methods used in procedural game map generation.

This work supported by Sichuan Science and Technology Program 2019ZDZX0009, 2019ZDZX0005, 2019GFW1116 and 2018GZ0008.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Content detail

    Google Scholar 

  2. Create a procedurally generated dungeon cave system

    Google Scholar 

  3. Generate random cave levels using cellular automata

    Google Scholar 

  4. Keras: The python deep learning library

    Google Scholar 

  5. Procedural content generation wiki

    Google Scholar 

  6. Procedural generation, December 2017

    Google Scholar 

  7. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  8. Ashlock, D., Mcguinness, C.: Automatic generation of fantasy role-playing modules. In: 2014 IEEE Conference on Computational Intelligence and Games (2014)

    Google Scholar 

  9. Cordonnier, G., Galin, E., Gain, J., Benes, B., Guerin, E., Peytavie, A., Canie, M.-P.: Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Trans. Graph. 36(4), 134 (2017)

    Article  Google Scholar 

  10. Gain, J., Marais, P., Straßer, W.: Terrain sketching. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 31–38. ACM (2009)

    Google Scholar 

  11. Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., Etrue, E.: On context-dependent clustering of bandits. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1253–1262. JMLR. org (2017)

    Google Scholar 

  12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Guérin, É.: Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. (TOG) 36(6), 228 (2017)

    Article  Google Scholar 

  14. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Imani, M., Ghoreishi, S.F., Allaire, D., Braga-Neto, U.M.: MFBO-SSM: multi-fidelity Bayesian optimization for fast inference in state-space models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7858–7865 (2019)

    Google Scholar 

  16. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  17. Kar, P., Li, S., Narasimhan, H., Chawla, S., Sebastiani, F.: Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1625–1634. ACM (2016)

    Google Scholar 

  18. Korda, N., Szörényi, B., Shuai, L.: Distributed clustering of linear bandits in peer to peer networks. In: Journal of Machine Learning Research Workshop and Conference Proceedings, vol. 48, pp. 1301–1309. International Machine Learning Society (2016)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Li, S.: The art of clustering bandits. Ph.D. thesis, Università degli Studi dell’ Insubria (2016)

    Google Scholar 

  21. Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 539–548. ACM (2016)

    Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  23. Olsen, J.: Realtime procedural terrain generation (2004)

    Google Scholar 

  24. On, C.K., Foong, N.W., Teo, J., Ibrahim, A.A.A., Guan, T.T.: Rule-based procedural generation of item in role-playing game. Int. J. Adv. Sci. Eng. Inf. Technol. 7(5), 1735 (2017)

    Article  Google Scholar 

  25. Qi, Y., Shen, X.-K., Duan, M.-Y., Cheng, H.-L.: A method of rendering clouds with perlin noise [j]. Acta Simulata Systematica Sinica 9, 023 (2002)

    Google Scholar 

  26. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  28. Schaal, J.: Procedural terrain generation. A case study from the game industry. In: Game Dynamics, pp. 133–150 (2017)

    Google Scholar 

  29. Wang, C., Bernstein, A., Le Boudec, J.-Y., Paolone, M.: Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks. IEEE Trans. Smart Grid 9(2), 953–962 (2016)

    Article  Google Scholar 

  30. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4), 834–848 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo Dingli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ping, K., Dingli, L. (2020). Conditional Convolutional Generative Adversarial Networks Based Interactive Procedural Game Map Generation. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-39445-5_30

Download citation

Publish with us

Policies and ethics