Skip to main content

Hyperspectral Imaging Combined with Machine Learning Classifiers for Diabetic Leg Ulcer Assessment – A Case Study

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

Diabetic ulcers of the foot are a serious complication of diabetes with huge impact on the patient’s life. Assessing which ulcer will heal spontaneously is of paramount importance. Hyperspectral imaging has been used lately to complete this task, since it has the ability to extract data about the wound itself and surrounding tissues. The classification of hyperspectral data remains, however, one of the most popular subjects in the hyperspectral imaging field. In the last decades, a large number of unsupervised and supervised methods have been proposed in response to this hyperspectral data classification problem. The aim of this study was to identify a suitable classification method that could differentiate as accurately as possible between normal and pathological biological tissues in a hyperspectral image with applications to the diabetic foot. The performance of four different machine learning approaches including minimum distance technique (MD), spectral angle mapper (SAM), spectral information divergence (SID) and support vector machine (SVM) were investigated and compared by analyzing their confusion matrices. The classifications outcome analysis revealed that the SVM approach has outperformed the MD, SAM, and SID approaches. The overall accuracy and Kappa coefficient for SVM were 95.54% and 0.9404, whereas for the other three approaches (MD, SAM and SID) these statistical parameters were 69.43%/0.6031, 79.77%/0.7349 and 72.41%/0.6464, respectively. In conclusion, the SVM could effectively classify and improve the characterization of diabetic foot ulcer using hyperspectral image by generating the most reliable ratio among various types of tissue depicted in the final maps with possible prognostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)

    Article  Google Scholar 

  2. Calin, M.A., Parasca, S.V., Savastru, D., Manea, D.: Hyperspectral imaging in the medical field: present and future. Appl. Spectrosc. Rev. 49(6), 435–447 (2014). https://doi.org/10.1080/05704928.2013.838678

    Article  Google Scholar 

  3. Chutia, D., Bhattacharyya, D.K., Sarma, K.K., Kalita, R., Sudhakar, S.: Hyperspectral remote sensing classifications: a perspective survey. Trans. GIS 20(4), 463–490 (2016)

    Article  Google Scholar 

  4. Liu, Z., Zhang, D., Yan, J.-Q., Li, Q.-L., Tang, Q.-L.: Classification of hyperspectral medical tongue images for tongue diagnosis. Comput. Med. Imaging Graph. 31, 672–678 (2007)

    Article  Google Scholar 

  5. Akbari, H., Uto, K., Kosugi, Y., Kojima, K., Tanak, N.: Cancer detection using infrared hyperspectral Imaging. Cancer Sci. 102(4), 852–857 (2011). https://doi.org/10.1111/j.1349-7006.2011.01849.x

    Article  Google Scholar 

  6. Fei, B., Akbari, H., Halig, L.V.: Hyperspectral imaging and spectral-spatial classification for cancer detection. In: 5th International Conference on BioMedical Engineering and Informatics 2012, Chongqing, vol. 1, pp. 62–64. IEEE (2012). https://doi.org/10.1109/bmei.2012.6513047

  7. Akbari, H., et al.: Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 17(7), 076005 (2012)

    Article  Google Scholar 

  8. Lu, G., Halig, L., Wang, D., Qin, X., Chen, Z.G., Fei, B.: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging. J. Biomed. Opt. 19(10), 106004 (2014)

    Article  Google Scholar 

  9. Fabelo, H., Ortega, S., Ravi, D., Kiran, B.R., et al.: Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS ONE 13(3), e0193721 (2018). https://doi.org/10.1371/journal.pone.0193721

    Article  Google Scholar 

  10. Ortega, S., Fabelo, H., Camacho, R., De Laluz Plaza, M., Callicó, G.M., Sarmiento, R.: Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed. Opt. Express 9(2), 818 (2018). https://doi.org/10.1364/BOE.9.000818

    Article  Google Scholar 

  11. Calin, M.A., Parasca, S.V., Manea, D.: Comparison of spectral angle mapper and support vector machine classification methods for mapping skin burn using hyperspectral imaging. In: Fournier, C., Georges, M.P., Popescu, G. (eds.) Unconventional Optical Imaging, SPIE Photonics Europe 2018, SPIE, Strasbourg, vol. 10677, p. 106773P (2018). https://doi.org/10.1117/12.2319267

  12. Aboras, M., Amasha, H., Ibraheem, I.: Early detection of melanoma using multispectral imaging and artificial intelligence techniques. Am. J. Biomed. Life Sci. 3(2–3), 29–33 (2015). https://doi.org/10.11648/j.ajbls.s.2015030203.16. Special Issue: Spectral Imaging for Medical Diagnosis “Modern Tool for Molecular Imaging”

    Article  Google Scholar 

  13. Blanco, F., López-Mesas, M., Serranti, S., Bonifazi, G., Havel, J., Valiente, M.: Hyperspectral imaging based method for fast characterization of kidney stone types. J. Biomed. Opt. 17(7), 076027 (2012)

    Article  Google Scholar 

  14. Denstedt, M., Pukstad, B.S., Paluchowski, L.A., Hernandez-Palacios, J.E., Randeberg, L.L.: Hyperspectral imaging as a diagnostic tool for chronic skin ulcers. In: Photonic Therapeutics and Diagnostics IX, SPIE BiOS 2013, SPIE, San Francisco, vol. 8565, p. 85650N (2013)

    Google Scholar 

  15. Ibaheem, I.: maximum likelihood and spectral angle mapper and K-means algorithms used to detection of melanoma. Am. J. Biomed. Life Sci. 3(2–3), 8–15 (2015). https://doi.org/10.11648/j.ajbls.s.2015030203.12

    Article  Google Scholar 

  16. Kashani, A.H., Wong, M., Koulisis, N., Chang, C.-I., Martin, G., Humayun, M.S.: Hyperspectral imaging of retinal microvascular anatomy. J. Biomed. Eng. Inf. 2(1), 139–150 (2016)

    Google Scholar 

  17. Guan, Y., Li, Q., Liu, H., Zhu, Z., Wang, Y.: Pathological leucocyte segmentation algorithm based on hyperspectral imaging technique. Opt. Eng. 51(5), 053202 (2012)

    Article  Google Scholar 

  18. Lall, M., Deal, J.: Classification of normal and lesional colon tissue using fluorescence excitation-scanning hyperspectral imaging as a method for early diagnosis of colon cancer. In: The National Conference on Undergraduate Research (NCUR) Proceedings, University of Memphis, Memphis, pp. 1063–1073 (2017)

    Google Scholar 

  19. Polder, G., Gerie, W.A.M., Van, D.H.: Calibration and characterization of imaging spectrographs. Near Infrared Spectrosc. 11, 193–210 (2003)

    Article  Google Scholar 

  20. Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988)

    Article  Google Scholar 

  21. Kruse, F.A., Richardson, L.L., Ambrosia, V.G.. Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data. In: ERIM 4th International Conference on Remote Sensing for Marine and Coastal Environments 1997, Environmental Research Institute of Michigan (ERIM), Orlando, vol. I, pp I-233–I-246 (1997)

    Google Scholar 

  22. Minimum distance classification. https://semiautomaticclassificationmanual-v4.readthedocs.io/en/latest/remote_sensing.html#classification-algorithms. Accessed 11 Feb 2019

  23. Kruse, F.A., Lefkoff, A.B., Boardoman, J.W.: The spectral image processing system (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993)

    Article  Google Scholar 

  24. Chang, C.-I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image. IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000). https://doi.org/10.1109/18.857802

    Article  MATH  Google Scholar 

  25. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 2, 121–167 (1998). Fayyad, U. (ed.) Kluwer Academic. https://www.slideshare.net/Tommy96/a-tutorial-on-support-vector-machines-for-pattern-recognition

  26. Vapnick, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)

    Google Scholar 

  27. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. National Taiwan University. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  28. Mercier, G., Lennon, M.: Support vector machines for hyperspectral image classification with spectral-based kernels. In: IEEE International, Geoscience and Remote Sensing Symposium. Proceedings, Toulouse, pp. 288–290. IEEE (2003). https://doi.org/10.1109/igarss.2003.1293752

  29. Pal, M., Mather, P.M.: Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener. Comput. Syst. 20(7), 1215–1225 (2004)

    Article  Google Scholar 

  30. Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Sign. Proces. 5(3), 606–617 (2011). https://doi.org/10.1109/JSTSP.2011.2139193

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Romanian Ministry of Research and Innovation by means of the Program No. 19PFE/17.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela A. Calin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calin, M.A., Parasca, S.V., Manea, D., Savastru, R. (2020). Hyperspectral Imaging Combined with Machine Learning Classifiers for Diabetic Leg Ulcer Assessment – A Case Study. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics