Skip to main content

Toxoplasma gondii Infection as a Risk Factor for Major Psychiatric Disorders: Pre-clinical and Clinical Evidence

  • Chapter
  • First Online:
Perinatal Inflammation and Adult Psychopathology

Abstract

The link between toxoplasmosis and major psychiatric disorders, such as schizophrenia and bipolar disorder, has been an important field of investigation in immunopsychiatry. Toxoplasma gondii is a parasitic protozoan that lodges in parenchymatous tissues like the central nervous system, disrupting their normal functioning and activating immune cells. T. gondii infection may occur in two different ways: (i) acquired through consumption of T. gondii as a foodborne pathogen and (ii) vertically from mother to fetus. Maternal toxoplasmosis infection activates the immune system of both mother and fetus. Fetal brain can be affected by such immune activation, explaining in part the association between congenital toxoplasmosis and schizophrenia. Moreover, T. gondii may induce a disruption in dopaminergic signaling pathways in the brain, which may lead to psychotic episodes. In this chapter, we discuss the pre-clinical and clinical evidence on the association between perinatal and postnatal T. gondii infection and the development of neuropsychiatric disorders, as well as the pathophysiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flegr J, Prandota J, Sovickova M, Israili ZH. Toxoplasmosis– a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One. 2014;9(3):e90203. https://doi.org/10.1371/journal.pone.0090203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: global status of toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009;39(12):1385–94. https://doi.org/10.1016/j.ijpara.2009.04.003.

    Article  PubMed  Google Scholar 

  3. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425):1965–76. https://doi.org/10.1016/S0140-6736(04)16412-X.

    Article  CAS  PubMed  Google Scholar 

  4. Bóia M, Carvalho-Costa F, Sodré F, Pinto G, Amendoeira M. Seroprevalence of toxoplasma gondii infection among indian people living in Iauareté, São Gabriel da Cachoeira, Amazonas, Brazil. Rev Inst Med Trop Sao Paulo. 2008;50:17–20. https://doi.org/10.1590/s0036-46652008000100004.

    Article  PubMed  Google Scholar 

  5. de la Rosa M, Bolivar J, Perez HA. Toxoplasma gondii infection in Amerindians of Venezuelan Amazon. Medicina (B Aires). 1999;59(6):759–62.

    Google Scholar 

  6. Wilking H, Thamm M, Stark K, Aebischer T, Seeber F. Prevalence, incidence estimations, and risk factors of toxoplasma gondii infection in Germany: a representative, cross-sectional, serological study. Sci Rep. 2016;6:22551. https://doi.org/10.1038/srep22551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol. 2000;30(12–13):1217–58.

    Article  CAS  Google Scholar 

  8. Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 2002;8(10):634–40.

    Article  CAS  Google Scholar 

  9. Kravetz JD, Federman DG. Toxoplasmosis in pregnancy. Am J Med. 2005;118(3):212–6. https://doi.org/10.1016/j.amjmed.2004.08.023.

    Article  PubMed  Google Scholar 

  10. Paquet C, Yudin MH. No. 285-toxoplasmosis in pregnancy: prevention, screening, and treatment. J Obstet Gynaecol Can. 2018;40(8):e687–93. https://doi.org/10.1016/j.jogc.2018.05.036.

    Article  PubMed  Google Scholar 

  11. Chen X, Chen B, Hou X, Zheng C, Yang X, Ke J, Hu X, Tan F. Association between toxoplasma gondii infection and psychiatric disorders in Zhejiang, Southeastern China. Acta Trop. 2019;192:82–6. https://doi.org/10.1016/j.actatropica.2019.02.001.

    Article  PubMed  Google Scholar 

  12. Kozar Z. Studies on toxoplasmosis in mental diseases. Biul Panstw Inst Med Morsk Trop J W Gdansku. 1953;5:134–7; English transl

    CAS  PubMed  Google Scholar 

  13. Berdoy M, Webster JP, Macdonald DW. Fatal attraction in rats infected with toxoplasma gondii. Proc Biol Sci. 2000;267(1452):1591–4. https://doi.org/10.1098/rspb.2000.1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Barros J, Barbosa I, Salem H, Rocha N, Kummer A, Okusaga O, Soares J, Teixeira A. Is there any association between toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J Affect Disord. 2017;209:59–65. https://doi.org/10.1016/j.jad.2016.11.016.

    Article  PubMed  Google Scholar 

  15. Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, Yolken R, Szoke A, Leboyer M, de Haan L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand. 2015;132(3):161–79. https://doi.org/10.1111/acps.12423.

    Article  CAS  PubMed  Google Scholar 

  16. Dubey JP, Lindsay DS, Speer CA. Structures of toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11(2):267–99.

    Article  CAS  Google Scholar 

  17. Sasai M, Pradipta A, Yamamoto M. Host immune responses to toxoplasma gondii. Int Immunol. 2018;30(3):113–9. https://doi.org/10.1093/intimm/dxy004.

    Article  CAS  PubMed  Google Scholar 

  18. Rezende-Oliveira K, Silva NM, Mineo JR, Rodrigues Junior V. Cytokines and chemokines production by mononuclear cells from parturient women after stimulation with live toxoplasma gondii. Placenta. 2012;33(9):682–7. https://doi.org/10.1016/j.placenta.2012.05.013.

    Article  CAS  PubMed  Google Scholar 

  19. Wang ZD, Liu HH, Ma ZX, Ma HY, Li ZY, Yang ZB, Zhu XQ, Xu B, Wei F, Liu Q. Toxoplasma gondii infection in immunocompromised patients: a systematic review and meta-analysis. Front Microbiol. 2017;8:389. https://doi.org/10.3389/fmicb.2017.00389.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–96. https://doi.org/10.1128/CMR.05013-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barratt JL, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev. 2010;23(4):795–836. https://doi.org/10.1128/CMR.00001-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Machala L, Kodym P, Maly M, Geleneky M, Beran O, Jilich D. Toxoplasmosis in immunocompromised patients. Epidemiol Mikrobiol Imunol. 2015;64(2):59–65.

    CAS  PubMed  Google Scholar 

  23. Hill DE, Chirukandoth S, Dubey JP. Biology and epidemiology of toxoplasma gondii in man and animals. Anim Health Res Rev. 2005;6(1):41–61.

    Article  Google Scholar 

  24. Wohlfert EA, Blader IJ, Wilson EH. Brains and brawn: toxoplasma infections of the central nervous system and skeletal muscle. Trends Parasitol. 2017;33(7):519–31. https://doi.org/10.1016/j.pt.2017.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Skariah S, McIntyre MK, Mordue DG. Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res. 2010;107(2):253–60. https://doi.org/10.1007/s00436-010-1899-6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cook I, Derrick EH. The incidence of toxoplasma antibodies in mental hospital patients. Australas Ann Med. 1961;10:137–41.

    Article  CAS  Google Scholar 

  27. Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162(4):767–73. https://doi.org/10.1176/appi.ajp.162.4.767.

    Article  PubMed  Google Scholar 

  28. Mortensen PB, Norgaard-Pedersen B, Waltoft BL, Sorensen TL, Hougaard D, Yolken RH. Early infections of toxoplasma gondii and the later development of schizophrenia. Schizophr Bull. 2007;33(3):741–4. https://doi.org/10.1093/schbul/sbm009.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brown AS. Exposure to prenatal infection and risk of schizophrenia. Front Psych. 2011;2:63. https://doi.org/10.3389/fpsyt.2011.00063.

    Article  Google Scholar 

  30. Blomström Å, Gardner R, Dalman C, Yolken R, Karlsson H Influence of maternal infections on neonatal acute phase proteins and their interaction in the development of non-affective psychosis. Transl Psychiatry. 2015;5:e502–e502. https://doi.org/10.1038/tp.2014.142.

  31. Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, Hatzimanolis A, Goes FS, Nestadt G, Mulle J, Coneely K, Hopkins M, Ruczinski I, Yolken R, Pulver AE. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One. 2015;10(3):e0116696. https://doi.org/10.1371/journal.pone.0116696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spann MN, Sourander A, Surcel HM, Hinkka-Yli-Salomaki S, Brown AS. Prenatal toxoplasmosis antibody and childhood autism. Autism Res. 2017;10(5):769–77. https://doi.org/10.1002/aur.1722.

    Article  PubMed  Google Scholar 

  33. Freedman D, Bao Y, Shen L, Schaefer CA, Brown AS. Maternal T. gondii, offspring bipolar disorder and neurocognition. Psychiatry Res. 2016;243:382–9. https://doi.org/10.1016/j.psychres.2016.06.057.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ladee GA. Diagnostic problems in psychiatry with regard to acquired toxoplasmosis. Psychiatr Neurol Neurochir. 1966;69(1):65–82.

    CAS  PubMed  Google Scholar 

  35. Assis J, Scaff M, Bacheschi L. Aspectos neurológicos da toxoplasmose adquirida: estudo clínico-laboratorial e terapêutico de 8 casos. Arq Neuropsiquiatr. 1969;27:271–83. https://doi.org/10.1590/s0004-282x1969000400004.

    Article  Google Scholar 

  36. Del Grande C, Galli L, Schiavi E, Dell’Osso L, Bruschi F. Is toxoplasma gondii a trigger of bipolar disorder? Pathogens. 2017;6:3. https://doi.org/10.3390/pathogens6010003.

    Article  CAS  PubMed Central  Google Scholar 

  37. Fuglewicz A, Piotrowski P, Stodolak A. Relationship between toxoplasmosis and schizophrenia: a review. Adv Clin Exp Med. 2017;26:1033–8. https://doi.org/10.17219/acem/61435.

    Article  Google Scholar 

  38. Fond G, Boyer L, Gaman A, Laouamri H, Attiba D, Richard JR, Delavest M, Houenou J, Le Corvoisier P, Charron D, Krishnamoorthy R, Oliveira J, Tamouza R, Yolken R, Dickerson F, Leboyer M, Hamdani N. Treatment with anti-toxoplasmic activity (TATA) for toxoplasma positive patients with bipolar disorders or schizophrenia: a cross-sectional study. J Psychiatr Res. 2015;63:58–64. https://doi.org/10.1016/j.jpsychires.2015.02.011.

    Article  PubMed  Google Scholar 

  39. Jones-Brando L, Torrey EF, Yolken R. Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of toxoplasma gondii. Schizophr Res. 2003;62:237–44. https://doi.org/10.1016/s0920-9964(02)00357-2.

    Article  PubMed  Google Scholar 

  40. Hamdani N, Daban-Huard C, Godin O, Laouamri H, Jamain S, Attiba D, Delavest M, Lepine JP, Le Corvoisier P, Houenou J, Richard JR, Yolken RH, Krishnamoorthy R, Tamouza R, Leboyer M, Dickerson FB. Effects of cumulative Herpesviridae and toxoplasma gondii infections on cognitive function in healthy, bipolar, and schizophrenia subjects. J Clin Psychiatry. 2017;78(1):e18–27. https://doi.org/10.4088/JCP.15m10133.

    Article  PubMed  Google Scholar 

  41. Stepanova EV, Kondrashin AV, Sergiev VP, Morozova LF, Turbabina NA, Maksimova MS, Brazhnikov AI, Shevchenko SB, Morozov EN. Significance of chronic toxoplasmosis in epidemiology of road traffic accidents in Russian Federation. PLoS One. 2017;12(9):e0184930. https://doi.org/10.1371/journal.pone.0184930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cook TB, Brenner LA, Cloninger CR, Langenberg P, Igbide A, Giegling I, Hartmann AM, Konte B, Friedl M, Brundin L, Groer MW, Can A, Rujescu D, Postolache TT. “Latent” infection with toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J Psychiatr Res. 2015;60:87–94. https://doi.org/10.1016/j.jpsychires.2014.09.019.

    Article  PubMed  Google Scholar 

  43. Kocazeybek B, Oner YA, Turksoy R, Babur C, Cakan H, Sahip N, Unal A, Ozaslan A, Kilic S, Saribas S, Aslan M, Taylan A, Koc S, Dirican A, Uner HB, Oz V, Ertekin C, Kucukbasmaci O, Torun MM. Higher prevalence of toxoplasmosis in victims of traffic accidents suggest increased risk of traffic accident in toxoplasma-infected inhabitants of Istanbul and its suburbs. Forensic Sci Int. 2009;187(1–3):103–8. https://doi.org/10.1016/j.forsciint.2009.03.007.

    Article  PubMed  Google Scholar 

  44. Pearce BD, Kruszon-Moran D, Jones JL. The association of toxoplasma gondii infection with neurocognitive deficits in a population-based analysis. Soc Psychiatry Psychiatr Epidemiol. 2014;49(6):1001–10. https://doi.org/10.1007/s00127-014-0820-5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ene L, Marcotte T, Umlauf A, Grancea C, Temereanca A, Bharti A, Achim C, Letendre S, Ruta S. Latent toxoplasmosis is associated with neurocognitive impairment in young adults with and without chronic HIV infection. J Neuroimmunol. 2016;299:1–7. https://doi.org/10.1016/j.jneuroim.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piekarski G, Zippelius HM, Witting PA. Effects of a latent toxoplasma infection on the learning ability in white laboratory rats and mice (author’s transl). Z Parasitenkd. 1978;57(1):1–15.

    Article  CAS  Google Scholar 

  47. Witting PA. Learning capacity and memory of normal and toxoplasma-infected laboratory rats and mice. Z Parasitenkd. 1979;61(1):29–51.

    Article  CAS  Google Scholar 

  48. Hodkova H, Kodym P, Flegr J. Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology. 2007;134(Pt 10):1329–37. https://doi.org/10.1017/S0031182007002673.

    Article  CAS  PubMed  Google Scholar 

  49. Kannan G, Moldovan K, Xiao JC, Yolken RH, Jones-Brando L, Pletnikov MV. Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol (Praha). 2010;57(2):151–5.

    Article  Google Scholar 

  50. Xiao J, Kannan G, Jones-Brando L, Brannock C, Krasnova IN, Cadet JL, Pletnikov M, Yolken RH. Sex-specific changes in gene expression and behavior induced by chronic toxoplasma infection in mice. Neuroscience. 2012;206:39–48. https://doi.org/10.1016/j.neuroscience.2011.12.051.

    Article  CAS  PubMed  Google Scholar 

  51. Wang T, Liu M, Gao XJ, Zhao ZJ, Chen XG, Lun ZR. Toxoplasma gondii: the effects of infection at different stages of pregnancy on the offspring of mice. Exp Parasitol. 2011;127(1):107–12. https://doi.org/10.1016/j.exppara.2010.07.003.

    Article  CAS  PubMed  Google Scholar 

  52. Webster JP, Brunton CFA, Macdonald DW. Effect of toxoplasma-Gondii upon neophobic behavior in wild brown-rats, Rattus-Norvegicus. Parasitology. 1994;109:37–43. https://doi.org/10.1017/S003118200007774x.

    Article  PubMed  Google Scholar 

  53. Kaushik M, Knowles S, Webster J. What makes a feline fatal in toxoplasma gondii’s fatal feline attraction? Infected rats choose wild cats. Integr Comp Biol. 2014;54:118–28. https://doi.org/10.1093/icb/icu060.

    Article  CAS  PubMed  Google Scholar 

  54. House PK, Vyas A, Sapolsky R. Predator cat odors activate sexual arousal pathways in brains of toxoplasma gondii infected rats. PLoS One. 2011;6(8):e23277. https://doi.org/10.1371/journal.pone.0023277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim A, Kumar V, Hari Dass SA, Vyas A. Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol. 2013;22(1):102–10. https://doi.org/10.1111/mec.12042.

    Article  CAS  PubMed  Google Scholar 

  56. Golcu D, Gebre RZ, Sapolsky RM. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner. Physiol Behav. 2014;135:98–103. https://doi.org/10.1016/j.physbeh.2014.05.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdulai-Saiku S, Vyas A. Loss of predator aversion in female rats after toxoplasma gondii infection is not dependent on ovarian steroids. Brain Behav Immun. 2017;65:95–8. https://doi.org/10.1016/j.bbi.2017.04.005.

    Article  CAS  PubMed  Google Scholar 

  58. Overstreet DH. The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev. 1993;17(1):51–68.

    Article  CAS  Google Scholar 

  59. Bay-Richter C, Petersen E, Liebenberg N, Elfving B, Wegener G. Latent toxoplasmosis aggravates anxiety- and depressive-like behaviour and suggest a role of gene-environment interactions in the behavioural response to the parasite. Behav Brain Res. 2019;364:133–9. https://doi.org/10.1016/j.bbr.2019.02.018.

    Article  CAS  PubMed  Google Scholar 

  60. Daniels BP, Sestito SR, Rouse ST. An expanded task battery in the Morris water maze reveals effects of toxoplasma gondii infection on learning and memory in rats. Parasitol Int. 2015;64(1):5–12. https://doi.org/10.1016/j.parint.2014.09.002.

    Article  PubMed  Google Scholar 

  61. Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dlugonska H. Sex-dependent neurotransmitter level changes in brains of toxoplasma gondii infected mice. Exp Parasitol. 2013;133(1):1–7. https://doi.org/10.1016/j.exppara.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  62. Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA. The neurotropic parasite toxoplasma gondii increases dopamine metabolism. PLoS One 2011;6(9). ARTN e23866. https://doi.org/10.1371/journal.pone.0023866.

  63. Berenreiterova M, Flegr J, Kubena AA, Nemec P. The distribution of toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One. 2011;6(12):e28925. https://doi.org/10.1371/journal.pone.0028925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM. Behavioral changes induced by toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A. 2007;104(15):6442–7. https://doi.org/10.1073/pnas.0608310104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hermes G, Ajioka JW, Kelly KA, Mui E, Roberts F, Kasza K, Mayr T, Kirisits MJ, Wollmann R, Ferguson DJP, Roberts CW, Hwang JH, Trendler T, Kennan RP, Suzuki Y, Reardon C, Hickey WF, Chen LP, McLeod R. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflamm. 2008;5. Artn 48. https://doi.org/10.1186/1742-2094-5-48

  66. Galvan-Ramirez MD, Gutierrez-Maldonado AF, Verduzco-Grijalva F, Jimenez JMD. The role of hormones on toxoplasma gondii infection: a systematic review. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00503.

  67. Szekeres-Bartho J. The role of progesterone in feto-maternal immunological cross talk. Med Princ Pract. 2018;27(4):301–7. https://doi.org/10.1159/000491576.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Al-warid HS, Al-qadhi BN. Evaluation of progesterone and estrogen hormonal levels in pregnant women with toxoplasmosis. Eur J Sci Res. 2012;91(4):515–9.

    Google Scholar 

  69. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37. https://doi.org/10.1038/nri3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boulanger-Bertolus J, Pancaro C, Mashour GA. Increasing role of maternal immune activation in neurodevelopmental disorders. Front Behav Neurosci. 2018;12. ARTN 230. https://doi.org/10.3389/fnbeh.2018.00230.

  71. Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24(6):881–97. https://doi.org/10.1016/j.bbi.2010.03.005.

    Article  PubMed  Google Scholar 

  72. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702. https://doi.org/10.1523/Jneurosci.2178-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80. https://doi.org/10.1176/appi.ajp.2009.09030361.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nahmias A, Nahmias S, Danielsson D. The possible role of Transplacentally-acquired antibodies to infectious agents, with molecular mimicry to nervous system sialic acid epitopes, as causes of Neuromental disorders: prevention and vaccine implications. Clin Dev Immunol. 2006;13:167–83. https://doi.org/10.1080/17402520600801745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arsenijevic D, Girardier L, Seydoux J, Chang HR, Dulloo AG. Altered energy balance and cytokine gene expression in a murine model of chronic infection with toxoplasma gondii. Am J Physiol-Endocrinal Metab. 1997;272(5):E908–17.

    Article  CAS  Google Scholar 

  76. Gostner JM, Geisler S, Stonig M, Mair L, Sperner-Unterweger B, Fuchs D. Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle. Neuropsychobiology. 2019:1–11. https://doi.org/10.1159/000496293.

  77. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflamm. 2013;10. Artn 43 https://doi.org/10.1186/1742-2094-10-43.

  78. Hamdani N, Daban-Huard C, Lajnef M, Gadel R, Le Corvoisier P, Delavest M, Carde S, Lepine JP, Jamain S, Houenou J, Galeh B, Richard JR, Aoki M, Charron D, Krishnamoorthy R, Yolken R, Dickerson F, Tamouza R, Leboyer M. Cognitive deterioration among bipolar disorder patients infected by toxoplasma gondii is correlated to interleukin 6 levels. J Affect Disord. 2015;179:161–6. https://doi.org/10.1016/j.jad.2015.03.038.

    Article  CAS  PubMed  Google Scholar 

  79. Xiao J, Li Y, Prandovszky E, Karuppagounder SS, Talbot CC, Dawson VL, Dawson TM, Yolken RH. Microrna-132 dysregulation in toxoplasma Gondii infection has implications for dopamine Signaling pathway. Neuroscience. 2014;268:128–38. https://doi.org/10.1016/j.neuroscience.2014.03.015.

    Article  CAS  PubMed  Google Scholar 

  80. Stock AK, Dajkic D, Kohling HL, von Heinegg EH, Fiedler M, Beste C. Humans with latent toxoplasmosis display altered reward modulation of cognitive control. Sci Rep-Uk 7. 2017; ARTN 10170. https://doi.org/10.1038/s41598-017-10926-6.

  81. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA A unique dual activity amino acid hydroxylase in toxoplasma gondii. PLoS One. 2009; 4(3). ARTN e4801. https://doi.org/10.1371/journal.pone.0004801.

  82. Daubner SC, Le T, Wang SZ. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508(1):1–12. https://doi.org/10.1016/j.abb.2010.12.017.

    Article  CAS  PubMed  Google Scholar 

  83. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III - the final common pathway. Schizophr Bull. 2009;35(3):549–62. https://doi.org/10.1093/schbul/sbp006.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lang D, Schott BH, van Ham M, Morton L, Kulikovskaja L, Herrera-Molina R, Pielot R, Klawonn F, Montag D, Jansch L, Gundelfinger ED, Smalla KH, Dunay IR. Chronic toxoplasma infection is associated with distinct alterations in the synaptic protein composition. J Neuroinflamm. 2018;15. ARTN 216. https://doi.org/10.1186/s12974-018-1242-1.

  85. David CN, Frias ES, Szu JI, Vieira PA, Hubbard JA, Lovelace J, Michael M, Worth D, McGovern KE, Ethell IM, Stanley BG, Korzus E, Fiacco TA, Binder DK, Wilson EH. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite toxoplasma gondii. PLoS Pathog 2016;12 (6). ARTN e1005643. https://doi.org/10.1371/journal.ppat.1005643.

  86. Haroon F, Handel U, Angenstein F, Goldschmidt J, Kreutzmann P, Lison H, Fischer KD, Scheich H, Wetzel W, Schluter D, Budinger E. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One. 2012;7(4). ARTN e35516. https://doi.org/10.1371/journal.pone.0035516.

  87. Sokolov BP. Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem. 1998;71(6):2454–64.

    Article  CAS  Google Scholar 

  88. Hammond J, Shan D, Meador-Woodruff J, McCullumsmith R. Evidence of glutamatergic dysfunction in the pathophysiology of schizophrenia. Synaptic Stress Pathogenesis Neuropsychiatr Disord. 2014:265–94. https://doi.org/10.1007/978-1-4939-1056-4_15.

  89. Frye MA, Tsai GCE, Huggins T, Coyle JT, Post RM. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry. 2007;61(2):162–6. https://doi.org/10.1016/j.biopsych.2006.01.024.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lucio Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Barros, J.L.V.M., de Miranda, A.S., Teixeira, A.L. (2020). Toxoplasma gondii Infection as a Risk Factor for Major Psychiatric Disorders: Pre-clinical and Clinical Evidence. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_7

Download citation

Publish with us

Policies and ethics