Skip to main content

Neonatal Meningitis Mechanisms and Implications in Adult Life

  • Chapter
  • First Online:
  • 515 Accesses

Part of the book series: Progress in Inflammation Research ((PIR,volume 84))

Abstract

Neonatal meningitis (NM) is a serious infectious disease that accounts for elevated mortality and morbidity rates in low- and middle-income countries. Despite decreased mortality rates due to the advancement in antimicrobial therapy, the incidence of morbidity has not reduced; rather a decrease in mortality increases the number of survivors after NM. Nearly half of all meningitis survivors suffer from complex neurological or neuropsychiatric sequelae later in life. Neurologists and microbiologists are continuously searching to improve the quality of life after this dreadful infection. The experimental NM demonstrated positive effects of various pharmacological approaches using antioxidants, matrix metalloproteinase (MMPs) inhibitors, kynurenine metabolites inhibitors, and antidepressants in addition to antibiotics and supportive therapy. To understand the long-term complications after NM, it is necessary to have profound knowledge of the mechanisms behind its pathology. Hence, in this chapter, we aim to enumerate experimental neonatal and infant meningitis models and enlist possible mechanisms associated with behavioral alterations. We also demonstrate the links between NM, inflammatory mediators, and brain injuries in clinical studies. This chapter will also highlight currently available effective therapy to reduce neurological complications and discuss the possible treatment regimen in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bundy LM, Noor A. Neonatal meningitis. In: StatPearls. Treasure Island: StatPearls Publishing LLC; 2019.

    Google Scholar 

  2. Baud O, Aujard Y. Neonatal bacterial meningitis. Handb Clin Neurol. 2013;112:1109–13. https://doi.org/10.1016/b978-0-444-52910-7.00030-1.

    Article  PubMed  Google Scholar 

  3. Bartlett AW, Smith B, George CR, McMullan B, Kesson A, Lahra MM, Palasanthiran P. Epidemiology of late and very late onset group B streptococcal disease: fifteen-year experience from two Australian tertiary pediatric facilities. Pediatr Infect Dis J. 2017;36(1):20–4. https://doi.org/10.1097/inf.0000000000001345.

    Article  PubMed  Google Scholar 

  4. Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in infants. Clin Perinatol. 2015;42(1):29–45, vii-viii. https://doi.org/10.1016/j.clp.2014.10.004.

    Article  PubMed  Google Scholar 

  5. Gordon SM, Srinivasan L, Harris MC. Neonatal meningitis: overcoming challenges in diagnosis, prognosis, and treatment with omics. Front Pediatr. 2017;5:139. https://doi.org/10.3389/fped.2017.00139.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Polin RA. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129(5):1006–15. https://doi.org/10.1542/peds.2012-0541.

    Article  PubMed  Google Scholar 

  7. Martin RJFA, Walsh MC. Postnatal bacterial infections. . Fanaroff and Martin’s neonatal-perinatal medicine: diseases of the fetus and infant. 9th ed. Philadelphia: Saunders/Elsevier; 2011.

    Google Scholar 

  8. Stoll BJ, Hansen NI, Sanchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ, Goldberg RN, Frantz ID 3rd, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL, Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics. 2011;127(5):817–26. https://doi.org/10.1542/peds.2010-2217.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chu SM, Hsu JF, Lee CW, Lien R, Huang HR, Chiang MC, Fu RH, Tsai MH. Neurological complications after neonatal bacteremia: the clinical characteristics, risk factors, and outcomes. PLoS One. 2014;9(11):e105294. https://doi.org/10.1371/journal.pone.0105294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halket S, de Louvois J, Holt DE, Harvey D. Long term follow up after meningitis in infancy: behaviour of teenagers. Arch Dis Child. 2003;88(5):395–8. https://doi.org/10.1136/adc.88.5.395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramakrishnan M, Ulland AJ, Steinhardt LC, Moisi JC, Were F, Levine OS. Sequelae due to bacterial meningitis among African children: a systematic literature review. BMC Med. 2009;7:47. https://doi.org/10.1186/1741-7015-7-47.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barichello T, Simoes LR, Generoso JS, Sharin VS, Souza LB, Jornada LK, Dominguini D, Valvassori SS, Teixeira AL, Quevedo J. Depression-like adult behaviors may be a long-term result of experimental pneumococcal meningitis in Wistar rats infants. Neurochem Res. 2016;41(10):2771–8. https://doi.org/10.1007/s11064-016-1992-z.

    Article  CAS  PubMed  Google Scholar 

  13. Barichello T, Fagundes GD, Generoso JS, Dagostin CS, Simoes LR, Vilela MC, Comim CM, Petronilho F, Quevedo J, Teixeira AL. Environmental enrichment restores cognitive deficits induced by experimental childhood meningitis. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999). 2014;36(4):322–9. https://doi.org/10.1590/1516-4446-2014-1443.

    Article  Google Scholar 

  14. Muri L, Grandgirard D, Buri M, Perny M, Leib SL. Combined effect of non-bacteriolytic antibiotic and inhibition of matrix metalloproteinases prevents brain injury and preserves learning, memory and hearing function in experimental paediatric pneumococcal meningitis. J Neuroinflammation. 2018;15(1):233. https://doi.org/10.1186/s12974-018-1272-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loeffler JM, Ringer R, Hablutzel M, Tauber MG, Leib SL. The free radical scavenger alpha-phenyl-tert-butyl nitrone aggravates hippocampal apoptosis and learning deficits in experimental pneumococcal meningitis. J Infect Dis. 2001;183(2):247–52. https://doi.org/10.1086/317921.

    Article  CAS  PubMed  Google Scholar 

  16. Barichello T, Dagostim VS, Generoso JS, Simoes LR, Dominguini D, Silvestre C, Michels M, Vilela MC, Jornada LK, Comim CM, Dal-Pizzol F, Teixeira AL, Quevedo J. Neonatal Escherichia coli K1 meningitis causes learning and memory impairments in adulthood. J Neuroimmunol. 2014;272(1–2):35–41. https://doi.org/10.1016/j.jneuroim.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  17. Giridharan VV, Simoes LR, Dagostin VS, Generoso JS, Rezin GT, Florentino D, Muniz JP, Collodel A, Petronilho F, Quevedo J, Barichello T. Temporal changes of oxidative stress markers in Escherichia coli K1-induced experimental meningitis in a neonatal rat model. Neurosci Lett. 2017;653:288–95. https://doi.org/10.1016/j.neulet.2017.06.002.

    Article  CAS  PubMed  Google Scholar 

  18. Barichello T, Lemos JC, Generoso JS, Carradore MM, Moreira AP, Collodel A, Zanatta JR, Valvassori SS, Quevedo J. Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae. Brain Res Bull. 2013;92:56–9. https://doi.org/10.1016/j.brainresbull.2012.05.014.

    Article  CAS  PubMed  Google Scholar 

  19. Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DM, Vuolo F, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL. Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res. 2011;36(10):1922–30. https://doi.org/10.1007/s11064-011-0514-2.

    Article  CAS  PubMed  Google Scholar 

  20. Remer KA, Jungi TW, Fatzer R, Tauber MG, Leib SL. Nitric oxide is protective in listeric meningoencephalitis of rats. Infect Immun. 2001;69(6):4086–93. https://doi.org/10.1128/iai.69.6.4086-4093.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest. 1996;98(11):2632–9. https://doi.org/10.1172/jci119084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bogdan I, Leib SL, Bergeron M, Chow L, Tauber MG. Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J Infect Dis. 1997;176(3):693–7. https://doi.org/10.1086/514092.

    Article  CAS  PubMed  Google Scholar 

  23. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry. 2010;68(12):1172–81. https://doi.org/10.1016/j.biopsych.2010.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maffioli C, Grandgirard D, Engler O, Leib SL. A tick-borne encephalitis model in infant rats infected with langat virus. J Neuropathol Exp Neurol. 2014;73(12):1107–15. https://doi.org/10.1097/nen.0000000000000131.

    Article  CAS  PubMed  Google Scholar 

  25. Barichello T, Belarmino E Jr, Comim CM, Cipriano AL, Generoso JS, Savi GD, Stertz L, Kapczinski F, Quevedo J. Correlation between behavioral deficits and decreased brain-derived neurotrophic [correction of neurotrofic] factor in neonatal meningitis. J Neuroimmunol. 2010;223(1–2):73–6. https://doi.org/10.1016/j.jneuroim.2010.04.004.

    Article  CAS  PubMed  Google Scholar 

  26. Liechti FD, Studle N, Theurillat R, Grandgirard D, Thormann W, Leib SL. The mood-stabilizer lithium prevents hippocampal apoptosis and improves spatial memory in experimental meningitis. PLoS One. 2014;9(11):e113607. https://doi.org/10.1371/journal.pone.0113607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leib SL, Clements JM, Lindberg RL, Heimgartner C, Loeffler JM, Pfister LA, Tauber MG, Leppert D. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain J Neurol. 2001;124(Pt 9):1734–42. https://doi.org/10.1093/brain/124.9.1734.

    Article  CAS  Google Scholar 

  28. Sutcliffe T. Controversies in the management of bacterial meningitis. Paediatr Child Health. 2002;7(7):449–53. https://doi.org/10.1093/pch/7.7.449.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McIntyre PB, Berkey CS, King SM, Schaad UB, Kilpi T, Kanra GY, Perez CM. Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA. 1997;278(11):925–31. https://doi.org/10.1001/jama.278.11.925.

    Article  CAS  PubMed  Google Scholar 

  30. Bewersdorf JP, Grandgirard D, Koedel U, Leib SL. Novel and preclinical treatment strategies in pneumococcal meningitis. Curr Opin Infect Dis. 2018;31(1):85–92. https://doi.org/10.1097/qco.0000000000000416.

    Article  PubMed  Google Scholar 

  31. Leib SL, Heimgartner C, Bifrare YD, Loeffler JM, Taauber MG. Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res. 2003;54(3):353–7. https://doi.org/10.1203/01.pdr.0000079185.67878.72.

    Article  CAS  PubMed  Google Scholar 

  32. Burnside SW, Hardingham GE. Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurodegenerative disease trajectory. Biochem Soc Trans. 2017;45(6):1295–303. https://doi.org/10.1042/bst20170013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barichello T, Fagundes GD, Generoso JS, Paula Moreira A, Costa CS, Zanatta JR, Simoes LR, Petronilho F, Dal-Pizzol F, Carvalho Vilela M, Lucio Teixeira A. Brain-blood barrier breakdown and pro-inflammatory mediators in neonate rats submitted meningitis by Streptococcus pneumoniae. Brain Res. 2012;1471:162–8. https://doi.org/10.1016/j.brainres.2012.06.054.

    Article  CAS  PubMed  Google Scholar 

  34. Christen S, Schaper M, Lykkesfeldt J, Siegenthaler C, Bifrare YD, Banic S, Leib SL, Tauber MG. Oxidative stress in brain during experimental bacterial meningitis: differential effects of alpha-phenyl-tert-butyl nitrone and N-acetylcysteine treatment. Free Radic Biol Med. 2001;31(6):754–62.

    Article  CAS  Google Scholar 

  35. Schaper M, Gergely S, Lykkesfeldt J, Zbaren J, Leib SL, Tauber MG, Christen S. Cerebral vasculature is the major target of oxidative protein alterations in bacterial meningitis. J Neuropathol Exp Neurol. 2002;61(7):605–13. https://doi.org/10.1093/jnen/61.7.605.

    Article  CAS  PubMed  Google Scholar 

  36. Coutinho LG, de Oliveira AHS, Witwer M, Leib SL, Agnez-Lima LF. DNA repair protein APE1 is involved in host response during pneumococcal meningitis and its expression can be modulated by vitamin B6. J Neuroinflammation. 2017;14(1):243. https://doi.org/10.1186/s12974-017-1020-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Christen S, Bifrare YD, Siegenthaler C, Leib SL, Tauber MG. Marked elevation in cortical urate and xanthine oxidoreductase activity in experimental bacterial meningitis. Brain Res. 2001;900(2):244–51. https://doi.org/10.1016/s0006-8993(01)02311-3.

    Article  CAS  PubMed  Google Scholar 

  38. Ghielmetti M, Ren H, Leib SL, Tauber MG, Christen S. Impaired cortical energy metabolism but not major antioxidant defenses in experimental bacterial meningitis. Brain Res. 2003;976(2):139–48. https://doi.org/10.1016/s0006-8993(03)02557-5.

    Article  CAS  PubMed  Google Scholar 

  39. Pfister LA, Tureen JH, Shaw S, Christen S, Ferriero DM, Tauber MG, Leib SL. Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis. Ann Neurol. 2000;47(3):329–35.

    Article  CAS  Google Scholar 

  40. Leib SL, Kim YS, Black SM, Tureen JH, Tauber MG. Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis. 1998;177(3):692–700. https://doi.org/10.1086/514226.

    Article  CAS  PubMed  Google Scholar 

  41. Horch HW, Kruttgen A, Portbury SD, Katz LC. Destabilization of cortical dendrites and spines by BDNF. Neuron. 1999;23(2):353–64.

    Article  CAS  Google Scholar 

  42. Blaser C, Wittwer M, Grandgirard D, Leib SL. Adjunctive dexamethasone affects the expression of genes related to inflammation, neurogenesis and apoptosis in infant rat pneumococcal meningitis. PLoS One. 2011;6(3):e17840. https://doi.org/10.1371/journal.pone.0017840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bifrare YD, Kummer J, Joss P, Tauber MG, Leib SL. Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J Infect Dis. 2005;191(1):40–5. https://doi.org/10.1086/426399.

    Article  CAS  PubMed  Google Scholar 

  44. Ling E, Shrikhande RA, Pasinetti GM, Neurotransmitters and growth factors: overview. In Encyclopedia of neuroscience. Academic Press/Elsevier; 2009. pp. 1073–83. ISBN: 978-0-08-045046-9.

    Google Scholar 

  45. Xu D, Lian D, Zhang Z, Liu Y, Sun J, Li L. Brain-derived neurotrophic factor is regulated via MyD88/NF-kappaB signaling in experimental Streptococcus pneumoniae meningitis. Sci Rep. 2017;7(1):3545. https://doi.org/10.1038/s41598-017-03861-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prager O, Friedman A, Nebenzahl YM. Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis. Exp Ther Med. 2017;13(3):799–809. https://doi.org/10.3892/etm.2017.4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sury MD, Vorlet-Fawer L, Agarinis C, Yousefi S, Grandgirard D, Leib SL, Christen S. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis. 2011;41(1):201–8. https://doi.org/10.1016/j.nbd.2010.09.007.

    Article  CAS  PubMed  Google Scholar 

  48. Grandgirard D, Burri M, Agyeman P, Leib SL. Adjunctive daptomycin attenuates brain damage and hearing loss more efficiently than rifampin in infant rat pneumococcal meningitis. Antimicrob Agents Chemother. 2012;56(8):4289–95. https://doi.org/10.1128/aac.00674-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liechti FD, Grandgirard D, Leib SL. The antidepressant fluoxetine protects the hippocampus from brain damage in experimental pneumococcal meningitis. Neuroscience. 2015;297:89–94. https://doi.org/10.1016/j.neuroscience.2015.03.056.

    Article  CAS  PubMed  Google Scholar 

  50. Barichello T, Pereira JS, Savi GD, Generoso JS, Cipriano AL, Silvestre C, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL. A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. J Neuroimmunol. 2011;233(1–2):12–7. https://doi.org/10.1016/j.jneuroim.2010.10.035.

    Article  CAS  PubMed  Google Scholar 

  51. Perny M, Roccio M, Grandgirard D, Solyga M, Senn P, Leib SL. The severity of infection determines the localization of damage and extent of sensorineural hearing loss in experimental pneumococcal meningitis. J Neurosci Off J Soc Neurosci. 2016;36(29):7740–9. https://doi.org/10.1523/jneurosci.0554-16.2016.

    Article  CAS  Google Scholar 

  52. Hathaway LJ, Grandgirard D, Valente LG, Tauber MG, Leib SL. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis. Open Biol. 2016;6(3). https://doi.org/10.1098/rsob.150269.

  53. Liechti FD, Bachtold F, Grandgirard D, Leppert D, Leib SL. The matrix metalloproteinase inhibitor RS-130830 attenuates brain injury in experimental pneumococcal meningitis. J Neuroinflammation. 2015;12:43. https://doi.org/10.1186/s12974-015-0257-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liechti FD, Grandgirard D, Leppert D, Leib SL. Matrix metalloproteinase inhibition lowers mortality and brain injury in experimental pneumococcal meningitis. Infect Immun. 2014;82(4):1710–8. https://doi.org/10.1128/iai.00073-14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wittwer M, Grandgirard D, Rohrbach J, Leib SL. Tracking the transcriptional host response from the acute to the regenerative phase of experimental pneumococcal meningitis. BMC Infect Dis. 2010;10:176. https://doi.org/10.1186/1471-2334-10-176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brandenburg LO, Varoga D, Nicolaeva N, Leib SL, Podschun R, Wruck CJ, Wilms H, Lucius R, Pufe T. Expression and regulation of antimicrobial peptide rCRAMP after bacterial infection in primary rat meningeal cells. J Neuroimmunol. 2009;217(1–2):55–64. https://doi.org/10.1016/j.jneuroim.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  57. Bellac CL, Coimbra RS, Christen S, Leib SL. Inhibition of the kynurenine-NAD+ pathway leads to energy failure and exacerbates apoptosis in pneumococcal meningitis. J Neuropathol Exp Neurol. 2010;69(11):1096–104. https://doi.org/10.1097/NEN.0b013e3181f7e7e9.

    Article  CAS  PubMed  Google Scholar 

  58. Sellner J, Grandgirard D, Gianinazzi C, Landmann RM, Leib SL. Effects of toll-like receptor 2 agonist pam(3)CysSK(4) on inflammation and brain damage in experimental pneumococcal meningitis. J Neuroimmunol. 2009;206(1–2):28–31. https://doi.org/10.1016/j.jneuroim.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  59. Meli DN, Coimbra RS, Erhart DG, Loquet G, Bellac CL, Tauber MG, Neumann U, Leib SL. Doxycycline reduces mortality and injury to the brain and cochlea in experimental pneumococcal meningitis. Infect Immun. 2006;74(7):3890–6. https://doi.org/10.1128/iai.01949-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gianinazzi C, Grandgirard D, Imboden H, Egger L, Meli DN, Bifrare YD, Joss PC, Tauber MG, Borner C, Leib SL. Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol. 2003;105(5):499–507. https://doi.org/10.1007/s00401-003-0672-7.

    Article  CAS  PubMed  Google Scholar 

  61. Meli DN, Loeffler JM, Baumann P, Neumann U, Buhl T, Leppert D, Leib SL. In pneumococcal meningitis a novel water-soluble inhibitor of matrix metalloproteinases and TNF-alpha converting enzyme attenuates seizures and injury of the cerebral cortex. J Neuroimmunol. 2004;151(1–2):6–11. https://doi.org/10.1016/j.jneuroim.2004.01.026.

    Article  CAS  PubMed  Google Scholar 

  62. Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CM, Sachs D, Teixeira MM, Teixeira AL, Quevedo J. TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol. 2010;221(1–2):42–5. https://doi.org/10.1016/j.jneuroim.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  63. Wu Q, Wang GP, Xie J, Guo JY, Gong SS. Tumor necrosis factor-alpha-induced ototoxicity in mouse cochlear organotypic culture. PLoS One. 2015;10(5):e0127703. https://doi.org/10.1371/journal.pone.0127703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grandgirard D, Oberson K, Buhlmann A, Gaumann R, Leib SL. Attenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis. Antimicrob Agents Chemother. 2010;54(3):1323–6. https://doi.org/10.1128/aac.00812-09.

  65. Borovcanin MM, Jovanovic I, Radosavljevic G, Pantic J, Minic Janicijevic S, Arsenijevic N, Lukic ML. Interleukin-6 in schizophrenia-is there a therapeutic relevance? Front Psych. 2017;8:221. https://doi.org/10.3389/fpsyt.2017.00221.

    Article  Google Scholar 

  66. Koedel U, Bernatowicz A, Frei K, Fontana A, Pfister HW. Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol (Baltimore, Md: 1950). 1996;157(11):5185–91.

    CAS  Google Scholar 

  67. Mitchell AJ, Yau B, McQuillan JA, Ball HJ, Too LK, Abtin A, Hertzog P, Leib SL, Jones CA, Gerega SK, Weninger W, Hunt NH. Inflammasome-dependent IFN-gamma drives pathogenesis in Streptococcus pneumoniae meningitis. J Immunol (Baltimore, Md: 1950). 2012;189(10):4970–80. https://doi.org/10.4049/jimmunol.1201687.

    Article  CAS  Google Scholar 

  68. Schwarze J, Cieslewicz G, Joetham A, Ikemura T, Makela MJ, Dakhama A, Shultz LD, Lamers MC, Gelfand EW. Critical roles for interleukin-4 and interleukin-5 during respiratory syncytial virus infection in the development of airway hyperresponsiveness after airway sensitization. Am J Respir Crit Care Med. 2000;162(2 Pt 1):380–6. https://doi.org/10.1164/ajrccm.162.2.9903057.

    Article  CAS  PubMed  Google Scholar 

  69. Moller AS, Bjerre A, Brusletto B, Joo GB, Brandtzaeg P, Kierulf P. Chemokine patterns in meningococcal disease. J Infect Dis. 2005;191(5):768–75. https://doi.org/10.1086/427514.

    Article  CAS  PubMed  Google Scholar 

  70. Sellner J, Leib SL. In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation. Neurobiol Dis. 2006;21(3):647–56. https://doi.org/10.1016/j.nbd.2005.09.007.

    Article  CAS  PubMed  Google Scholar 

  71. Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H, Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun. 1999;67(5):2590–601.

    Google Scholar 

  72. Sury MD, Agarinis C, Widmer HR, Leib SL, Christen S. JNK is activated but does not mediate hippocampal neuronal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis. 2008;32(1):142–50. https://doi.org/10.1016/j.nbd.2008.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bifrare YD, Gianinazzi C, Imboden H, Leib SL, Tauber MG. Bacterial meningitis causes two distinct forms of cellular damage in the hippocampal dentate gyrus in infant rats. Hippocampus. 2003;13(4):481–8. https://doi.org/10.1002/hipo.10142.

    Article  PubMed  Google Scholar 

  74. Grandgirard D, Steiner O, Tauber MG, Leib SL. An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol. 2007;114(6):609–17. https://doi.org/10.1007/s00401-007-0304-8.

    Article  PubMed  Google Scholar 

  75. Elkington PT, O’Kane CM, Friedland JS. The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol. 2005;142(1):12–20. https://doi.org/10.1111/j.1365-2249.2005.02840.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kolarova A, Ringer R, Tauber MG, Leib SL. Blockade of NMDA receptor subtype NR2B prevents seizures but not apoptosis of dentate gyrus neurons in bacterial meningitis in infant rats. BMC Neurosci. 2003;4(21). https://doi.org/10.1186/1471-2202-4-21.

  77. Coimbra RS, Loquet G, Leib SL. Limited efficacy of adjuvant therapy with dexamethasone in preventing hearing loss due to experimental pneumococcal meningitis in the infant rat. Pediatr Res. 2007;62(3):291–4. https://doi.org/10.1203/PDR.0b013e318123fb7c.

    Article  CAS  PubMed  Google Scholar 

  78. Coimbra RS, Voisin V, de Saizieu AB, Lindberg RL, Wittwer M, Leppert D, Leib SL. Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biol. 2006;4(15). https://doi.org/10.1186/1741-7007-4-15.

  79. Daoud AS, Al-Sheyyab M, Abu-Ekteish F, Obeidat A, Ali AA, El-Shanti H. Neonatal meningitis in northern Jordan. J Trop Pediatr. 1996;42(5):267–70. https://doi.org/10.1093/tropej/42.5.267.

    Article  CAS  PubMed  Google Scholar 

  80. des Portes V. Long-term follow-up of bacterial meningitis – sequels in children and adults: incidence, type, and assessment issues. Medecine et maladies infectieuses. 2009;39(7–8):572–80. https://doi.org/10.1016/j.medmal.2009.02.019.

    Article  CAS  PubMed  Google Scholar 

  81. Sinha IP. Nelson textbook of pediatrics. Semin Fetal Neonatal Med. 2012;17:380.

    Article  Google Scholar 

  82. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):21–47. https://doi.org/10.1128/cmr.00031-13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hernandez MI, Sandoval CC, Tapia JL, Mesa T, Escobar R, Huete I, Wei XC, Kirton A. Stroke patterns in neonatal group B streptococcal meningitis. Pediatr Neurol. 2011;44(4):282–8. https://doi.org/10.1016/j.pediatrneurol.2010.11.002.

    Article  PubMed  Google Scholar 

  84. Chatue Kamga HB. Neuroimaging complication of neonatal meningitis in full-term and near-term Newborns: a retrospective study of one Center. Glob Pediatr Health. 2016;3:2333794x16681673. https://doi.org/10.1177/2333794x16681673.

  85. Iijima S, Shirai M, Ohzeki T. Severe, widespread vasculopathy in late-onset group B streptococcal meningitis. Pediatr Int. 2007;49(6):1000–3. https://doi.org/10.1111/j.1442-200X.2007.02474.x.

    Article  PubMed  Google Scholar 

  86. Schimmel MS, Schlesinger Y, Berger I, Steinberg A, Eidelman AI. Transverse myelitis: unusual sequelae of neonatal group B streptococcus disease. J Perinatol. 2002;22(7):580–1. https://doi.org/10.1038/sj.jp.7210777.

    Article  PubMed  Google Scholar 

  87. Tann CJ, Martinello KA, Sadoo S, Lawn JE, Seale AC, Vega-Poblete M, Russell NJ, Baker CJ, Bartlett L, Cutland C, Gravett MG, Ip M, Le Doare K, Madhi SA, Rubens CE, Saha SK, Schrag S, Sobanjo-Ter Meulen A, Vekemans J, Heath PT. Neonatal encephalopathy with group B streptococcal disease worldwide: systematic review, Investigator Group datasets, and meta-analysis. Clin Infect Dis. 2017;65(suppl_2):S173–s189. https://doi.org/10.1093/cid/cix662.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology. 2002;22(3):106–32.

    Article  Google Scholar 

  89. Grimwood K, Anderson P, Anderson V, Tan L, Nolan T. Twelve year outcomes following bacterial meningitis: further evidence for persisting effects. Arch Dis Child. 2000;83(2):111–6. https://doi.org/10.1136/adc.83.2.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Taylor HG, Schatschneider C, Minich NM. Longitudinal outcomes of Haemophilus influenzae meningitis in school-age children. Neuropsychology. 2000;14(4):509–18.

    Article  CAS  Google Scholar 

  91. Viner RM, Booy R, Johnson H, Edmunds WJ, Hudson L, Bedford H, Kaczmarski E, Rajput K, Ramsay M, Christie D. Outcomes of invasive meningococcal serogroup B disease in children and adolescents (MOSAIC): a case-control study. Lancet Neurol. 2012;11(9):774–83. https://doi.org/10.1016/s1474-4422(12)70180-1.

    Article  PubMed  Google Scholar 

  92. Milner KM, Neal EF, Roberts G, Steer AC, Duke T. Long-term neurodevelopmental outcome in high-risk newborns in resource-limited settings: a systematic review of the literature. Paediatr Int Child Health. 2015;35(3):227–42. https://doi.org/10.1179/2046905515y.0000000043.

    Article  CAS  PubMed  Google Scholar 

  93. Koomen I, van Furth AM, Kraak MA, Grobbee DE, Roord JJ, Jennekens-Schinkel A. Neuropsychology of academic and behavioural limitations in school-age survivors of bacterial meningitis. Dev Med Child Neurol. 2004;46(11):724–32.

    Article  Google Scholar 

  94. Rodenburg-Vlot MB, Ruytjens L, Oostenbrink R, Goedegebure A, van der Schroeff MP. Systematic review: incidence and course of hearing loss caused by bacterial meningitis: in search of an optimal timed Audiological follow-up. Otol Neurotol. 2016;37(1):1–8. https://doi.org/10.1097/mao.0000000000000922.

    Article  PubMed  Google Scholar 

  95. Adachi N, Ito K, Sakata H. Risk factors for hearing loss after pediatric meningitis in Japan. Ann Otol Rhinol Laryngol. 2010;119(5):294–6.

    Article  Google Scholar 

  96. Roine I, Pelkonen T, Cruzeiro ML, Kataja M, Peltola H, Pitkaranta A. Hearing impairment and its predictors in childhood bacterial meningitis in Angola. Pediatr Infect Dis J. 2013;32(5):563–5. https://doi.org/10.1097/INF.0b013e3182880037.

    Article  PubMed  Google Scholar 

  97. Roine I, Pelkonen T, Cruzeiro ML, Kataja M, Aarnisalo A, Peltola H, Pitkaranta A. Fluctuation in hearing thresholds during recovery from childhood bacterial meningitis. Pediatr Infect Dis J. 2014;33(3):253–7. https://doi.org/10.1097/inf.0000000000000218.

    Article  PubMed  Google Scholar 

  98. Darmaun L, Levy C, Lagree M, Bechet S, Varon E, Dessein R, Cohen R, Martinot A, Dubos F. Recurrent pneumococcal meningitis in children: a Multicenter case-control study. Pediatr Infect Dis J. 2019; https://doi.org/10.1097/inf.0000000000002358.

  99. Chu WP, Que TL, Lee WK, Wong SN. Meningoencephalitis caused by Bacillus cereus in a neonate. Hong Kong Med J = Xianggang yi xue za zhi. 2001;7(1):89–92.

    CAS  PubMed  Google Scholar 

  100. Mao DH, Miao JK, Zou X, Chen N, Yu LC, Lai X, Qiao MY, Chen QX. Risk factors in predicting prognosis of neonatal bacterial meningitis-a systematic review. Front Neurol. 2018;9:929. https://doi.org/10.3389/fneur.2018.00929.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355(7):685–94. https://doi.org/10.1056/NEJMoa053792.

    Article  CAS  PubMed  Google Scholar 

  102. Makwana A, Sheppard C, Borrow R, Fry N, Andrews NJ, Ladhani SN. Characteristics of children with invasive pneumococcal disease after the introduction of the 13-valent pneumococcal conjugate vaccine in England and Wales, 2010–2016. Pediatr Infect Dis J. 2018;37(7):697–703. https://doi.org/10.1097/inf.0000000000001845.

    Article  PubMed  Google Scholar 

  103. Brouwer MC, van de Beek D. Epidemiology of community-acquired bacterial meningitis. Curr Opin Infect Dis. 2018;31(1):78–84. https://doi.org/10.1097/qco.0000000000000417.

    Article  PubMed  Google Scholar 

  104. Schoeman J, Wait J, Burger M, van Zyl F, Fertig G, van Rensburg AJ, Springer P, Donald P. Long-term follow up of childhood tuberculous meningitis. Dev Med Child Neurol. 2002;44(8):522–6.

    Article  CAS  Google Scholar 

  105. Brouwer MC, McIntyre P, Prasad K, van de Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2015;9:Cd004405. https://doi.org/10.1002/14651858.CD004405.pub5.

    Article  Google Scholar 

  106. Ogunlesi TA, Odigwe CC, Oladapo OT. Adjuvant corticosteroids for reducing death in neonatal bacterial meningitis. Cochrane Database Syst Rev. 2015;(11):Cd010435. https://doi.org/10.1002/14651858.CD010435.pub2.

  107. Holt DE, Halket S, de Louvois J, Harvey D. Neonatal meningitis in England and Wales: 10 years on. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F85–9. https://doi.org/10.1136/fn.84.2.f85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gunnink SF, Vlug R, Fijnvandraat K, van der Bom JG, Stanworth SJ, Lopriore E. Neonatal thrombocytopenia: etiology, management and outcome. Expert Rev Hematol. 2014;7(3):387–95. https://doi.org/10.1586/17474086.2014.902301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The University of Texas Health Science Center at Houston (UTHealth); University of Southern Santa Catarina (UNESC); National Council for Scientific and Technological Development (CNPq), and Fundação de Amparo à Pesquisa e Inovação de Santa Catarina (FAPESC). This work was supported by grants to TB from Alzheimer’s Association® AARGDNTF-19-619645.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Barichello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giridharan, V.V., Simoes, L.R., Sayana, P., Petronilho, F., Hasbun, R., Barichello, T. (2020). Neonatal Meningitis Mechanisms and Implications in Adult Life. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_6

Download citation

Publish with us

Policies and ethics