Skip to main content

Zika virus Infection and Potential Mechanisms Implicated in Neuropsychiatric Complications

  • Chapter
  • First Online:
Perinatal Inflammation and Adult Psychopathology

Abstract

Zika virus (ZIKV) emerged as a global health threat due to its association with severe outcomes in humans, including microcephaly and other neurological complications. ZIKV replication and induction of neuronal death are considered key factors for severe ZIKV-induced disease. Understanding the pathogenic mechanisms induced by ZIKV infection is crucial to identify potential therapeutic targets that may prevent or at least minimize the consequences in early phases of disease and adulthood. This chapter will discuss how ZIKV emerged in the past few years, will describe some aspects of the infection and, finally, will focus on the evidence of neuropathological mechanisms of the disease in humans and experimental models and its potential neuropsychiatric outcomes. The mechanisms explored are: (i) infection and virus replication, activation and apoptosis of neural progenitor cells, mature neurons and glial cells with concomitant induction of neuroinflammation; (ii) induction of neuronal excitotoxicity; and (iii) autophagy modulation during ZIKV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dick GWA, Kitchen SF, Haddow AJ. Zika virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.

    Article  CAS  PubMed  Google Scholar 

  2. MacNamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45.

    Article  CAS  PubMed  Google Scholar 

  3. Duffy MR, Chen T-H, Hancock WT, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.

    Article  CAS  PubMed  Google Scholar 

  4. Faye O, Freire CCM, Iamarino A, et al. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis. 2014;8:e2636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Oehler E, Watrin L, Larre P, et al. Zika virus infection complicated by Guillain-Barre syndrome – case report, French Polynesia, December 2013. Euro Surveill. 2014;19:7–9.

    Article  Google Scholar 

  6. Mallet H-P, Vial A-L, Musso D. Bilan De L’Epidemie a Virus Zika En Polynesie Francaise, 2013-2014. Bull d’information Sanit Epidemiol Stat. 2015;13:1–8.

    Google Scholar 

  7. Cao-Lormeau V-M, Roche C, Teissier A, et al. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis. 2014;20:1960.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woods CG. Human microcephaly. Curr Opin Neurobiol. 2004;14:112–7.

    Article  CAS  PubMed  Google Scholar 

  9. Willison HJ, Jacobs BC, Van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388:717–27.

    Article  PubMed  Google Scholar 

  10. Campos G, Bandeira A, Sardi S. Zika Virus Outbreak, Bahia Brazil. Emerg Infect Dis. 2015;21:1881.

    Article  Google Scholar 

  11. Ministério da Saúde, Secretaria de Vigilância da Saúde. Protocolo de Vigilância e Resposta À Microcefalia Relacionada À Infecção Pelo Vírus Zika. Versão 12–09/12/2015. 2015. p. 70.

    Google Scholar 

  12. Pan American Health Organization. Epidemiological update. Neurological syndrome, congenital anomalies, and Zika virus infection. 17 January 2016. World Health Organ. 2016.

    Google Scholar 

  13. Culshaw A, Mongkolsapaya J, Screaton G. The immunology of Zika virus. F1000Res. 2018;7:203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pettersson JH, Eldholm V, Seligman SJ, et al. How did Zika virus emerge in the Pacific Islands and Latin America? mBio. 2016;7:1–7.

    Article  Google Scholar 

  15. Liu Z, Shi W, Qin C. The evolution of Zika virus from Asia to the Americas. Nat Rev Microbiol. 2019;17:131–9.

    Article  CAS  PubMed  Google Scholar 

  16. Weaver SC, Costa F, Garcia-Blanco MA, et al. Zika virus: history, emergence, biology, and prospects for control. Antivir Res. 2016;130:69–80.

    Article  CAS  PubMed  Google Scholar 

  17. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects – reviewing the evidence for causality. N Engl J Med. 2016;374:1981–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kurscheidt FA, Mesquita CSS, Damke GMZF, et al. Persistence and clinical relevance of Zika virus in the male genital tract. Nat Rev Urol. 2019;16:211–30.

    Article  PubMed  Google Scholar 

  19. WHO. Zika Situation report – Zika virus, Microcephaly and Guillain-Barré syndrome. March 10; 2017. p. 1–5.

    Google Scholar 

  20. ECDC. Zika virus transmission worldwide. Eur Cent Dis Prev Control 2019;21.

    Google Scholar 

  21. Haddow AD, Schuh AJ, Yasuda CY, et al. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis. 2012;6 https://doi.org/10.1371/journal.pntd.0001477.

  22. Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koppolu V, Shantha Raju T. Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. J Neurovirol. 2018;24:255–72.

    Article  CAS  PubMed  Google Scholar 

  24. Pinto-Díaz CA, Rodríguez Y, Monsalve DM, et al. Autoimmunity in Guillain-Barré syndrome associated with Zika virus infection and beyond. Autoimmun Rev. 2017;16:327–34.

    Article  PubMed  CAS  Google Scholar 

  25. Karkhah A, Nouri HR, Javanian M, et al. Zika virus: epidemiology, clinical aspects, diagnosis, and control of infection. Eur J Clin Microbiol Infect Dis. 2018;37:2035–43.

    Article  CAS  PubMed  Google Scholar 

  26. Pan American Health Organisation. Neurological syndrome, congenital malformations, and Zika virus infection. Implications for public health in the Americas. Pan American Health Organisation. 2015.

    Google Scholar 

  27. Brasil P, Pereira JP Jr, Raja Gabaglia C, et al. Zika virus infection in pregnant women in Rio de Janeiro – preliminary report. N Engl J Med. 2016; https://doi.org/10.1056/NEJMoa1602412.

  28. Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–8.

    Article  CAS  PubMed  Google Scholar 

  29. Gulland A. Zika virus is a global public health emergency, declares WHO. BMJ. 2016;352:i657.

    Article  PubMed  Google Scholar 

  30. World Health Organization. WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. WHO. 2016. https://www.who.int/en/news-room/detail/18-11-2016-fifth-meeting-of-the-emergency-committee-under-the-international-health-regulations-(2005)-regarding-microcephaly-other-neurological-disorders-and-zika-virus.

  31. Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect Dis. 2018;18:e1–13.

    Article  PubMed  Google Scholar 

  32. Coulombier D, Danielsson N, Donachie A, et al. Rapid risk assessment: microcephaly in Brazil potentially linked to the Zika virus epidemic. ECDC. 2015.

    Google Scholar 

  33. Simões-e-Silva AC, Moreira JM, Romanelli RMC, Teixeira AL. Zika virus challenges for neuropsychiatry. Neuropsychiatr Dis Treat. 2016;12:1747–60.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moore CA, Staples JE, Dobyns WB, et al. Characterizing the pattern of anomalies in congenital zika syndrome for pediatric clinicians. JAMA Pediatr. 2017;171:288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rathore APS, Saron WAA, Lim T, Jahan N, St. John AL. Maternal immunity and antibodies to dengue virus promote infection and Zika virus–induced microcephaly in fetuses. Sci Adv. 2019;5:eaav3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Camargos VN, Foureaux G, Medeiros DC. In-depth characterization of congenital Zika syndrome in immunocompetent mice: antibody-dependent enhancement and an antiviral peptide therapy. et al., EBioMedicine. 2019:1–14. https://doi.org/10.1016/j.ebiom.2019.05.014.

  37. Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016;19:258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lancaster MA, Renner M, Martin C-A, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  PubMed  Google Scholar 

  39. Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron. 2010;66:386–402.

    Article  CAS  PubMed  Google Scholar 

  40. De Oliveira Melo AS, Aguiar RS, Amorim MMR, et al. Congenital Zika virus infection: beyond neonatal microcephaly. JAMA Neurol. 2016;73:1407–16.

    Article  Google Scholar 

  41. Satterfield-Nash A, Kotzky K, Allen J, et al. Health and development at age 19–24 months of 19 children who were born with microcephaly and laboratory evidence of congenital Zika virus infection during the 2015 Zika virus outbreak – Brazil, 2017. MMWR Morb Mortal Wkly Rep. 2017;66:1347–51.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nem de Oliveira Souza I, Frost PS, França JV, et al. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci Transl Med. 2018;10:eaar2749.

    Article  PubMed  CAS  Google Scholar 

  43. Julander JG, Siddharthan V, Park AH, et al. Consequences of in utero exposure to Zika virus in offspring of AG129 mice. Sci Rep. 2018;8:9384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Miner JJ, Diamond MS. Zika virus pathogenesis and tissue tropism. Cell Host Microbe. 2017;21:134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Costa V, Del Sarto J, Rocha RF, et al. N -methyl-d-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio. 2017;8:e00350–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang H, Hammack C, Ogden SC, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Yang YF, Yang Y, et al. AXL promotes Zika virus infection in astrocytes by antagonizing type i interferon signalling. Nat Microbiol. 2018;3:302–9.

    Article  CAS  PubMed  Google Scholar 

  48. Azevedo RSS, de Sousa JR, Araujo MTF, et al. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep. 2018;8:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol. 2019;9:190009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534:267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994; https://doi.org/10.1056/NEJM199403033300907.

  52. Benarroch EE. NMDA receptors: recent insights and clinical correlations. Neurology. 2011;76:1750–7.

    Article  PubMed  Google Scholar 

  53. Kew JNC, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology. 2005;179:4–29.

    Article  CAS  PubMed  Google Scholar 

  54. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  55. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tehse J, Taghibiglou C. The overlooked aspect of excitotoxicity: glutamate-independent excitotoxicity in traumatic brain injuries. Eur J Neurosci. 2018:0–2.

    Google Scholar 

  57. Lipton SA, Nicotera P. Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium. 1998;23:165–71.

    Article  CAS  PubMed  Google Scholar 

  58. Gaburro J, Bhatti A, Sundaramoorthy V, et al. Zika virus-induced hyper excitation precedes death of mouse primary neuron. Virol J. 2018;15:1–13.

    Article  CAS  Google Scholar 

  59. Olmo IG, Carvalho TG, Costa VV, et al. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol. 2017;8:1–14.

    Article  CAS  Google Scholar 

  60. Saiz J-C, Martín-Acebes MA. The race to find antivirals for Zika virus. Antimicrob Agents Chemother. 2017;61:1–9.

    Google Scholar 

  61. McArthur MA. Zika virus: recent advances towards the development of vaccines and therapeutics. Viruses. 2017;9 https://doi.org/10.3390/v9060143.

  62. Jackman JA, Costa VV, Park S, et al. Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat Mater. 2018;1

    Google Scholar 

  63. Barrows NJ, Campos RK, Powell ST, et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Adcock RS, Chu YK, Golden JE, Chung DH. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antivir Res. 2017; https://doi.org/10.1016/j.antiviral.2016.11.018.

  65. Xu M, Lee EM, Wen Z, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22:1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meertens L, Labeau A, Dejarnac O, et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep. 2017;18:324–33.

    Article  CAS  PubMed  Google Scholar 

  67. Tricarico PM, Caracciolo I, Crovella S, D’Agaro P. Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem Biophys Res Commun. 2017;492:597–602.

    Article  CAS  PubMed  Google Scholar 

  68. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    Article  CAS  PubMed  Google Scholar 

  69. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009; https://doi.org/10.1016/j.tins.2009.08.002.

  70. Abreu CM, Gama L, Krasemann S, et al. Microglia increase inflammatory responses in iPSC-derived human brainspheres. Front Microbiol. 2018;9:1–12.

    Article  CAS  Google Scholar 

  71. de Sousa JR, Azevedo RDSDS, Martins Filho AJ, et al. In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine. 2018;111:255–64.

    Article  PubMed  CAS  Google Scholar 

  72. Wang J, Liu J, Zhou R, et al. Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem Biophys Res Commun. 2018;497:619–25.

    Article  CAS  PubMed  Google Scholar 

  73. Shao Q, Herrlinger S, Yang S-L, et al. Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development. 2016;143:4127–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shao Q, Herrlinger S, Zhu Y-N, et al. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus. Development. 2017;144:4114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Christofferson DE, Li Y, Yuan J. Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol. 2013;76:129–50.

    Article  PubMed  CAS  Google Scholar 

  76. Taylor LD, Jones F, Kubota ESFCS, Pocock JM. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci. 2005; https://doi.org/10.1523/jneurosci.4456-04.2005.

  77. Kingham PJ, Pocock JM. Microglial secreted Cathepsin B induces neuronal apoptosis. J Neurochem. 2001;76:1475–84.

    Article  CAS  PubMed  Google Scholar 

  78. Brown GC. Nitric oxide and neuronal death. Nitric Oxide. 2010;23:153–65.

    Article  CAS  PubMed  Google Scholar 

  79. Bal-Price A, Matthias A, Brown GC. Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem. 2002;80:73–80.

    Article  CAS  PubMed  Google Scholar 

  80. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15:209–16.

    Article  CAS  PubMed  Google Scholar 

  81. Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z. Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 2017;27:491–504.

    Article  CAS  PubMed  Google Scholar 

  82. Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ. 2009;16:21–30.

    Article  CAS  PubMed  Google Scholar 

  83. Kulkarni A, Chen J, Maday S. Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr Opin Neurobiol. 2018;51:29–36.

    Article  CAS  PubMed  Google Scholar 

  84. Lee J-A. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol. 2012;21:1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work? Annu Rev Biochem. 2016;85:685–713.

    Article  CAS  PubMed  Google Scholar 

  86. Chiramel AI, Best SM. Role of autophagy in Zika virus infection and pathogenesis. Virus Res. 2018;254:34–40.

    Article  CAS  PubMed  Google Scholar 

  87. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19:579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014;53:167–78.

    Article  CAS  PubMed  Google Scholar 

  89. Hamel R, Dejarnac O, Wichit S, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the Drosophila brain. Cell Host Microbe. 2018;24:57–68.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang Q, Luo Z, Zeng J, et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human Fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016;19:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Souza BSF, Sampaio GLA, Pereira CS, et al. Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Nat Publ Group. 2016:1–13.

    Google Scholar 

  93. Cao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017;214:2303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng H, Liu B, Yves TD, et al. Zika virus induces autophagy in human umbilical vein endothelial cells. Viruses. 2018;10. https://doi.org/10.3390/v10050259.

  95. Romero-Brey I, Bartenschlager R. Endoplasmic reticulum: the favorite intracellular niche for viral replication and assembly. Viruses. 2016;8:1–26.

    Article  CAS  Google Scholar 

  96. Lennemann NJ, Coyne CB. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy. 2017;13:322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marim, F.M., Camargos, V.N., Queiroz-Junior, C.M., Costa, V.V. (2020). Zika virus Infection and Potential Mechanisms Implicated in Neuropsychiatric Complications. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_12

Download citation

Publish with us

Policies and ethics