Skip to main content

Sex and Age Influence in The Effects of Perinatal Immune Activation in Animals

  • Chapter
  • First Online:
Perinatal Inflammation and Adult Psychopathology

Abstract

Biological sex is an important risk factor for neurodevelopmental disorders (ND), such as autism spectrum disorder (ASD) and schizophrenia. Indeed, sex influences the incidence, onset, and clinical course of ND. For example, schizophrenia is diagnosed in men at younger ages when compared to women. However, postmenopausal women diagnosed with schizophrenia present more severe symptoms and worse prognosis when compared to men. Regarding ASD, the male-to-female ratio is close to 3:1. Notably in ASD, a diagnostic gender bias seems to occur. Preclinical models based on maternal immune activation (MIA) or neonatal immune activation (NIA) were developed for a better understanding of neurobiological alterations underlying the development of schizophrenia and ASD. Importantly, MIA models relate to immune challenges on the first and second trimesters of human pregnancy, whereas NIA models to immune challenge at the end of the third trimester in humans. Despite the importance of perinatal infections for the pathogenesis of ND and for a better understanding of sex influences in the neurobiology of these disorders, preclinical studies evaluating sex-related alterations in animal models of perinatal immune activation (PIA) are still limited. This chapter summarizes the current findings on sex influences in PIA models and brings some perspectives for novel studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASD:

Autism spectrum disorder

BDNF:

Brain-derived neurotrophic factor

DA:

Dopamine

ED:

Embryonic day

LPS:

Lipopolysaccharide

MIA:

Maternal immune activation

mPFC:

Medial prefrontal cortex

NIA:

Neonatal immune activation

PAMP:

Pathogen-associated molecular pattern molecules

PIA:

Perinatal immune activation

PN:

Postnatal day

Poly IC:

Polyinosinic–polycytidylic acid

References

  1. Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol. 2015;65:139–50.

    Google Scholar 

  2. Kraepelin E. Dementia praecox and paraphrenia. Huntington: Publishing Co. Inc; 1919.

    Google Scholar 

  3. Ardalan M, Chumak T, Vexler Z, Mallard C. Sex-dependent effects of perinatal inflammation on the brain: implication for neuro-psychiatric disorders. Int J Mol Sci. 2019;20(9)

    Google Scholar 

  4. Aleman A, Kahn RS, Selten J-P. Sex differences in the risk of schizophrenia. Arch Gen Psychiatry. 2003;60(6):565.

    Article  PubMed  Google Scholar 

  5. Gogos A, Sbisa AM, Sun J, Gibbons A, Udawela M, Dean B. A role for estrogen in schizophrenia: clinical and preclinical findings. Int J Endocrinol. 2015;2015

    Google Scholar 

  6. da Silva TL, Ravindran AV. Contribution of sex hormones to gender differences in schizophrenia: a review. Asian J Psychiatr. 2015;18:2–14.

    Article  PubMed  Google Scholar 

  7. Seeman MV, Lang M. The role of estrogens in schizophrenia gender differences. Schizophr Bull. 1990;16(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  8. Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull. 2011;37(3):504.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Immonen J, Jääskeläinen E, Korpela H, Miettunen J. Age at onset and the outcomes of schizophrenia: a systematic review and meta-analysis. Early Interv Psychiatry. 2017;11(6):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jones PB. Adult mental health disorders and their age at onset. Br J Psychiatry. 2013;202(s54):s5–10.

    Article  Google Scholar 

  11. Häfner H, Maurer K, Löffler W, Riecher-Rössler A. The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry. 1993;162(1):80–6.

    Article  PubMed  Google Scholar 

  12. Mendrek A, Mancini-Marïe A. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci Biobehav Rev. 2016;67:57–78.

    Article  PubMed  Google Scholar 

  13. Kleinhaus K, Harlap S, Perrin M, Manor O, Weiser M, Lichtenberg P, et al. Age, sex and first treatment of schizophrenia in a population cohort. J Psychiatr Res. 2011;45(1):136–41.

    Article  CAS  PubMed  Google Scholar 

  14. Brzezinski-sinai NA, Seeman MV. Women and schizophrenia: planning for the future. Future Neurol. 2017;12:89–99.

    Article  CAS  Google Scholar 

  15. Li R, Ma X, Wang G, Yang J, Wang C. Why sex differences in schizophrenia? J Transl Neurosci. 2016;1(1):37–42.

    Google Scholar 

  16. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J, Kulkarni J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treatment. 2012;2012:1–9.

    Google Scholar 

  17. Desai PR, Lawson KA, Barner JC, Rascati KL. Identifying patient characteristics associated with high schizophrenia-related direct medical costs in community-dwelling patients. J Manag Care Pharm. 2013;19(6):468–77.

    Article  PubMed  Google Scholar 

  18. González-Rodríguez A, Seeman MV. Pharmacotherapy for schizophrenia in postmenopausal women. Expert Opin Pharmacother. 2018;19(8):809–21.

    Article  PubMed  CAS  Google Scholar 

  19. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;

    Google Scholar 

  20. Lai M-C, Lombardo MV, Auyeung B, Chakrabarti B, Baron-Cohen S. Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatr. 2015;54(1):11–24.

    Article  Google Scholar 

  21. Beggiato A, Peyre H, Maruani A, Scheid I, Rastam M, Amsellem F, et al. Gender differences in autism spectrum disorders: divergence among specific core symptoms. Autism Res. 2016;3

    Google Scholar 

  22. Shattuck PT, Seltzer MM, Greenberg JS, Orsmond GI, Bolt D, Kring S, et al. Change in autism symptoms and maladaptive behaviors in adolescents and adults with an autism spectrum disorder. J Autism Dev Disord. 2007;37(9):1735–47.

    Article  PubMed  Google Scholar 

  23. Barendse EM, Hendriks MPH, Jansen JFA, Backes WH, Hofman PAM, Thoonen G, et al. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord. 2013;5(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ibi D, Yamada K. Therapeutic targets for neurodevelopmental disorders emerging from animal models with perinatal immune activation. Int J Mol Sci. 2015;16(12):28218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown AS. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol. 2012;72(10):1272–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang H, Xu L, Shao L, Xia R, Yu Z, Ling Z, et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun. 2016;58:165–72.

    Article  PubMed  Google Scholar 

  27. Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA. Maternal infection during pregnancy and autism Spectrum disorders. J Autism Dev Disord. 2015;45(12):4015–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35(3):528–48.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lancaster K, Dietz DM, Moran TH, Pletnikov MV. Abnormal social behaviors in young and adult rats neonatally infected with Borna disease virus. Behav Brain Res. 2007;176(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  30. Borrell J, Vela JM, Arévalo-Martin A, Molina-Holgado E, Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats: implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology. 2002;26(2):204–15.

    Article  CAS  PubMed  Google Scholar 

  31. Meyer U, Engler A, Weber L, Schedlowski M, Feldon J. Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience. 2008;154(2):701–9.

    Article  CAS  PubMed  Google Scholar 

  32. Macêdo DS, Araújo DP, Sampaio LRL, Vasconcelos SMM, Sales PMG, Sousa FCF, et al. Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: a systematic review. Braz J Med Biol Res. 2012;45(3):179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun. 2008 May;22(4):469–86.

    Article  CAS  PubMed  Google Scholar 

  34. Meehan C, Harms L, Frost JD, Barreto R, Todd J, Schall U, et al. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav Immun. 2016;63:8–20.

    Article  PubMed  CAS  Google Scholar 

  35. Ribeiro BMM, do Carmo MRS, Freire RS, Rocha NFM, Borella VCM, de Menezes AT, et al. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1–3):12–9.

    Article  PubMed  Google Scholar 

  36. Kirsten TB, Chaves-Kirsten GP, Bernardes S, Scavone C, Sarkis JE, Bernardi MM, et al. Lipopolysaccharide exposure induces maternal hypozincemia, and prenatal zinc treatment prevents autistic-like behaviors and disturbances in the striatal dopaminergic and mtor systems of offspring. PLoS One. 2015;10:e0134565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Custódio CS, Mello BSF, Filho AJMC, de Carvalho Lima CN, Cordeiro RC, Miyajima F, et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age-related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol Neurobiol. 2017:1–14.

    Google Scholar 

  38. Hui CW, St-Pierre A, El Hajj H, Remy Y, Hébert SS, Luheshi GN, et al. Prenatal immune challenge in mice leads to partly sex-dependent Behavioral, microglial, and molecular abnormalities associated with schizophrenia. Front Mol Neurosci. 2018;11:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Haida O, Al Sagheer T, Balbous A, Francheteau M, Matas E, Soria F, et al. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatr. 2019;9(1):124.

    Article  Google Scholar 

  40. Zhang Y, Cazakoff BN, Thai CA, Howland JG. Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology. 2012;62:1299–307.

    Article  CAS  PubMed  Google Scholar 

  41. Lins BR, Marks WN, Zabder NK, Greba Q, Howland JG. Maternal immune activation during pregnancy alters the behavior profile of female offspring of Sprague Dawley rats. eNeuro. 2019;6(2):ENEURO.0437-18.2019.

    Google Scholar 

  42. ICY X, Hampson DR. Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PloS one, 2014. 9(8):e104433.

    Google Scholar 

  43. Majidi-Zolbanin J, Doosti M-H, Kosari-Nasab M, Salari A-A. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis. Neuroscience. 2015;294:69–81.

    Article  CAS  PubMed  Google Scholar 

  44. Arad M, Piontkewitz Y, Albelda N, Shaashua L, Weiner I. Immune activation in lactating dams alters sucklings’ brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: a novel neurodevelopmental model of sex-specific psychopathology. Brain Behav Immun. 2017;63:35–49.

    Article  CAS  PubMed  Google Scholar 

  45. Monte AS, Mello BSF, Borella VCM, da Silva Araujo T, da Silva FER, Sousa FCFD, et al. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: study of sex differences and brain oxidative alterations. Behav Brain Res. 2017;331

    Google Scholar 

  46. Kohman RA, Tarr AJ, Sparkman NL, Bogale TMH, Boehm GW. Neonatal endotoxin exposure impairs avoidance learning and attenuates endotoxin-induced sickness behavior and central IL-1β gene transcription in adulthood. Behav Brain Res. 2008;194(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  47. Foley KA, MacFabe DF, Vaz A, Ossenkopp K-P, Kavaliers M. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci. 2014;39:68–78.

    Article  CAS  PubMed  Google Scholar 

  48. Foley KA, MacFabe DF, Kavaliers M, Ossenkopp K-P. Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: relevance to autism spectrum disorders. Behav Brain Res. 2015;278:244–56.

    Article  CAS  PubMed  Google Scholar 

  49. Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, et al. Sex-specific gene–environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci. 2017;114(6):1383 LP–1388.

    Article  CAS  Google Scholar 

  50. Batinić B, Santrač A, Divović B, Timić T, Stanković T, Obradović AL, et al. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav Brain Res. 2016;299:72–80.

    Article  PubMed  CAS  Google Scholar 

  51. MacRae M, Macrina T, Khoury A, Migliore MM, Kentner AC. Tracing the trajectory of behavioral impairments and oxidative stress in an animal model of neonatal inflammation. Neuroscience. 2015;298:455–66.

    Article  CAS  PubMed  Google Scholar 

  52. Custódio CS, Mello BSF, Filho AJMC, de Carvalho Lima CN, Cordeiro RC, Miyajima F, et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age-related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol Neurobiol. 2018;55(5):3775–88.

    PubMed  Google Scholar 

  53. de Souza DF, Wartchow KM, Lunardi PS, Brolese G, Tortorelli LS, Batassini C, et al. Changes in astroglial markers in a maternal immune activation model of schizophrenia in Wistar rats are dependent on sex. Front Cell Neurosci. 2015;9:489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fernández de Cossío L, Guzmán A, van der Veldt S, Luheshi GN. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav Immun. 2017;63:88–98.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macedo, D.S., Santos Júnior, M.A., Monte, A.S., Vasconcelos, G.S., Araújo, T.d.S., Vasconcelos, S.M.M. (2020). Sex and Age Influence in The Effects of Perinatal Immune Activation in Animals. In: Teixeira, A.L., Macedo, D., Baune, B.T. (eds) Perinatal Inflammation and Adult Psychopathology. Progress in Inflammation Research, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-39335-9_10

Download citation

Publish with us

Policies and ethics