Skip to main content

Controlled Mechanical Ventilation to Reduce Primary Energy Consumption in Air Conditioning of Greenhouses

  • Conference paper
  • First Online:
Book cover Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production (MID-TERM AIIA 2019)

Abstract

Air conditioning is one of the major cost in greenhouses production. One of the most interesting energy efficiency strategies is the reduction of the energy use itself. Mechanical ventilation with heat recovery could allow for a reduction in energy use for heating and cooling air inside greenhouses. After a preliminary study carried out in laboratory, a mechanical ventilation prototype was tested in a real case. The unit was installed at service of a mini-tunnel greenhouse located in Termoli (Campobasso)–Italy. The ventilation system consists of a high efficiency heat exchanger, able to recover thermal energy from the exhaust air, and a heat pump to adjust the supply air temperature before entering in greenhouse. A perforated duct was installed for the air distribution and a single grid was used to suck the indoor air. To evaluate the energy performance of the unit a supervision system allowed measuring and collecting all the thermo-physical parameters, in each side of the machine, and in the heat pump circuit. Four NTC probes were used to assess the temperature uniformity inside greenhouse. First tests were carried out on temperature control during winter season. They show that the indoor air temperature (set at 27 °C) is suitably adjusted by driving the unit with the reference probe installed on the machine recovery side. Only an offset of few Celsius degrees is observed due to duct heat loss and the recovery grid placed on one side. Furthermore, the mechanical ventilation system had also shown notable energy performance: COPs (mean value) of 5.4 and 5.7 at outdoor air temperature of 18.0 °C and 15.7 °C respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianchi B., Cavone G., Cice G., Tamborrino A., Amodio M., Capotorto I., et al. (2015a). CO2 employment as refrigerant fluid with a low environmental impact. Experimental tests on arugula and design criteria for a test bench. Sustainability, 7, 3734–3752.

    Article  Google Scholar 

  • Bianchi B., Giametta F., La Fianza G., Gentile A., & Catalano P. (2015b). Microclimate measuring and fluid‑dynamic simulation in an industrial broiler house: testing of an experimental ventilation system. Rivista Veterinaria Italiana, 51(2), 85–92.

    Google Scholar 

  • Coomans, M., Allaerts, K., Wittemans, L., & Pinxteren, D. (2013). Monitoring and energetic performance of two similar semi-closed greenhouse ventilation system. Energy Conversion and Management, 76, 128–136.

    Article  Google Scholar 

  • Cuce, E., Harjunowibowo, D., & Cuce, P. M. (2016). Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews, 64, 34–59.

    Article  Google Scholar 

  • Fucci F., Perone C., Fianza G. L., Brunetti L., Giametta F., & Catalano P. (2016). Study of a prototype of an advanced mechanical ventilation system with heat recovery integreted by heat pump. Energy and Buildings, 133, 111–121.

    Google Scholar 

  • Perone, C., Fucci, F., Fianza, G. L., Brunetti, L., Giametta, F., Catalano, P., et al. (2017). Experimental Study of a Mechanical Ventilation System in a Greenhouse. Chemical Engineering Transactions, 58, 811–816.

    Google Scholar 

  • Sethi, V., & Sharma, S. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82, 832–859.

    Article  Google Scholar 

  • Van de Bulck N., Coomans M., Wittemans L., Hanssens J., & Steppe K. (2013). Monitoring and energetic analysis of an innovative ventilation concept in a Belgian greenhouse, Energy and Buildings, 57, 51–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perone, C., Catalano, P., Giametta, F., La Fianza, G., Brunetti, L., Bianchi, B. (2020). Controlled Mechanical Ventilation to Reduce Primary Energy Consumption in Air Conditioning of Greenhouses. In: Coppola, A., Di Renzo, G., Altieri, G., D'Antonio, P. (eds) Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019. Lecture Notes in Civil Engineering, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-39299-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39299-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39298-7

  • Online ISBN: 978-3-030-39299-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics