Skip to main content

Modeling the Effect of Different Management Practices for Soil Erosion Control in a Mediterranean Watershed

  • Conference paper
  • First Online:
  • 880 Accesses

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 67))

Abstract

To counteract the threat of soil erosion, European countries are called to identify the high-risk erosion areas and to adopt Best Management Practices (BMPs). The Soil and Water Assessment Tool (SWAT) was used to identify the critical source areas, for the current management, in the Carapelle watershed, an agricultural watershed located in the Puglia region (Southern Italy). SWAT was calibrated and validated both manually and automatically, using SWAT-CUP, for runoff and sediment load at daily time scale for a 5-years period. Results show that in the Carapelle the average annual sediment load is 5.95 t ha−1 y−1. A threshold of sediment yield 10 t ha−1 y−1 was selected to discretize the high erosion-risk areas, resulting in 59 HRUs characterized by agricultural land use. Three BMPs scenarios, based on the regional policies, were modeled: contour farming, no-tillage and reforestation. No-tillage is the most effective scenario, reducing soil erosion to 4.20 t ha−1. The study offers to watershed managers a methodology to discretize the high erosion-risk areas, test and choose the most effective BMPs for sediment load reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelwahab, O. M. M., Ricci, G. F., De Girolamo, A. M., & Gentile, F. (2018). Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research, 166, 363–376. https://doi.org/10.1016/j.envres.2018.06.029.

    Article  Google Scholar 

  • Abouabdillah, A., White, M., Arnold, J. G., De Girolamo, A. M., Oueslati, O., & Maataoui, A. et al. (2014). Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT British Society of Soil Science https://doi.org/10.1111/sum.12146.

    Article  Google Scholar 

  • Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., & Gentile, F. (2014). Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In Proceedings of SPIE—The International Society for Optical Engineering, 9239, Art. No. 92392B. https://doi.org/10.1117/12.2067185.

  • Arabi, M., Frankenberger, J. R., Engel, B. A., & Arnold, J. G. (2008). Representation of agricultural conservation practices with SWAT. Hydrological Processes, 22, 3042–3055. https://doi.org/10.1002/hyp.6890.

    Article  Google Scholar 

  • Arnold, J. G., Kiniri, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch S. L. (2012a). Soil & Water Assessment Tool: Input/Output Documentation Version 2012. Texas Water Resource Institute.

    Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al. (2012b). SWAT: Model use, calibration, and validation. Transactions ASABE, 55, 1491–1508.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment—Part 1: Model development. Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

    Article  Google Scholar 

  • Coderoni, S., & Esposti, R. (2018). CAP payments and agricultural GHG emissions in Italy. A farm-level assessment. Science of the Total Environment, 627, 427–437. https://doi.org/10.1016/j.scitotenv.2018.01.197.

    Article  Google Scholar 

  • De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N., & Pisante, M. (2007). No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil and Tillage Research, 92(1–2), 69–78. https://doi.org/10.1016/j.still.2006.01.012.

    Article  Google Scholar 

  • European Commission (EC). (2006). Commission staff working document “Impact Assessment of the Thematic Strategy on Soil Protection” (SEC(2006)620) Avaliable online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52006PC0232. Accessed 15 December 2016.

  • Gentile, F., Bisantino, T., Corbino, R., Milillo, F., Romano, G., & Trisorio Liuzzi, G. (2008). Sediment transport monitoring in a Northern Puglia watershed. WIT Transactions on Engineering Sciences, 60, 153–161. https://doi.org/10.2495/DEB080161.

    Article  Google Scholar 

  • Ginzky, H., Dooley, E., Heuser, I. L., Kasimbazi, E., Markus, T., & Qin, T. (2017). International Yearbook of Soil Law and Policy. Springer.

    Google Scholar 

  • Jeong, J., Kannan, N., Arnold, J. G., Glick, R., Gosselink, L., & Srninvasan, R. (2010). Development and integration of subhourly rainfall-runoff modeling capability within a watershed model. Water Resources Management, 24(15), 4505–4527.

    Article  Google Scholar 

  • Jones, A., Panagos, P., Barcelo, S., Bouraoui, F., Bosco, C., Dewitte, O., et al. (2012). The State of soil in Europe: A contribution from JRC to the European environmental agency’s environment state and outlook report—SOER 2010. Luxembourg: Publications Office.

    Google Scholar 

  • Kuhlman, T., Reinhard, S., & Gaaff, A. (2010). Estimating the costs and benefits of soil conservation in Europe. Land Use Policy, 27(1), 22–32. https://doi.org/10.1016/j.landusepol.2008.08.002.

    Article  Google Scholar 

  • MiPAAF. (2018). De Decreto del Ministero delle Politiche Agricole Alimentari e Forestali (MiPAAF) n. 1867 del 18 gennaio 2018. Pubblicato sulla G.U.R.I n. 74 del 29/3/2017, Disciplina del regime di condizionalità ai sensi del regolamento (UE) n. 1306/2013 e delle riduzioni ed esclusioni per inadempienze dei beneficiari dei pagamenti diretti e dei programmi di sviluppo rurale.

    Google Scholar 

  • Mtibaa, S., Hotta, N., & Irie, M. (2018). Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed. Tunisia. Science of the Total Environment, 616–617(2018), 1–16. https://doi.org/10.1016/j.scitotenv.2017.10.290.

    Article  Google Scholar 

  • Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., Alewell, C. (2016). Soil conservation in Europe: Wish or reality? Land Degradation and Development, 27(6), 1547–1551. https://doi.org/10.1002/ldr.2538.

    Article  Google Scholar 

  • Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3, 443–463. https://doi.org/10.3390/agriculture3030443.

    Article  Google Scholar 

  • Ricci, G. F., De Girolamo, A. M., Abdelwahab, O. M., & Gentile, F. (2018). Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degradation and Development, 29, 1233–1248. https://doi.org/10.1002/ldr.2889.

    Article  Google Scholar 

  • Ullrich, A., & Volk, M. (2009). Application of the soil and water assessment tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management, 96, 1207–1217. https://doi.org/10.1016/j.agwat.2009.03.010.

    Article  Google Scholar 

  • United States Department of Agriculture—National Conservation Practice Standards. 20017. National Conservation Practice Standards. Available online at https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/cp/ncps/?cid=nrcs143_026849.

  • Vigiak, O., Malagó, A., Bouraoui, F., Grizzetti, B., Weissteiner, C. J., & Pastori, M. (2016). Impact of current riparian land on sediment retention in the Danube River Basin. Sustainability of Water Quality and Ecology, 8, 30–49. https://doi.org/10.1016/j.swaqe.2016.08.001.

    Article  Google Scholar 

  • Xiao, L., Yang, X., Chen, S., & Cai, H. (2015). An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China. CATENA, 125, 50–60. https://doi.org/10.1016/j.catena.2014.10.016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ricci, G.F., De Girolamo, A.M., Gentile, F. (2020). Modeling the Effect of Different Management Practices for Soil Erosion Control in a Mediterranean Watershed. In: Coppola, A., Di Renzo, G., Altieri, G., D'Antonio, P. (eds) Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production. MID-TERM AIIA 2019. Lecture Notes in Civil Engineering, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-39299-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39299-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39298-7

  • Online ISBN: 978-3-030-39299-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics