Skip to main content

Zerocross Density Decomposition: A Novel Signal Decomposition Method

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 869))

Abstract

We developed the Zerocross Density Decomposition (ZCD) method for decomposition of nonstationary signals into subcomponents (intrinsic modes). The method is based on the histogram of zero-crosses of a signal across different scales. We discuss the main properties of ZCD and parameters of ZCD modes (statistical characteristics, principal frequencies and energy distribution) and compare it with well-known Empirical Mode Decomposition (EMD). To analyze the efficiency of decomposition we use Partial Orthogonality Index, Total Index of Orthogonality, Percentage Error in Energy, Variance Ratio, Smoothness, Ruggedness, and Variability metrics, and propose a novel metrics of distance from perfect correlation matrix. An example of modal analysis of a nonstationary signal and a comparison of decomposition of randomly generated signals using stability and noise robustness analysis is provided. Our results show that the proposed method can provide more stable results than EMD as indicated by the odd-even reliability and noise robustness analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal MAK (2000) Wavelet based multiresolution zero-crossing representations. PhD Dissertation, Iowa State University

    Google Scholar 

  • Apostolidis G, Hadjileontiadis L (2017) Swarm decomposition: a novel signal analysis using swarm intelligence. Signal Process 132:40–50

    Google Scholar 

  • Bellizzi S, Sampaio R (2015) The smooth decomposition as a nonlinear modal analysis tool. Mech Syst Signal Proc 64–65:245–256. https://doi.org/10.1016/j.ymssp.2015.04.015

  • Boashash B (2015) Time-frequency signal analysis and processing: a comprehensive reference, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Cai G, Selesnick IW, Wang S, Dai W, Zhu Z (2018) Sparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosis. J Sound Vib 432:213–234. https://doi.org/10.1016/j.jsv.2018.06.037

    Article  Google Scholar 

  • Chen S, Peng Z, Yang Y, Dong X, Zhang W (2017) Intrinsic chirp component decomposition by using Fourier series representation. Signal Process 137:319–327

    Article  Google Scholar 

  • Cohen L (1995) Time-frequency analysis. Prentice-Hall, New York

    Google Scholar 

  • Coifman RR, Steinerberger S, Wu H (2017) Carrier frequencies, holomorphy, and unwinding. SIAM J Math Anal 49(6):4838–4864

    Article  MathSciNet  Google Scholar 

  • Cronbach LJ (1946) A case study of the splithalf reliability coefficient. J Educ Psychol 37(8):473–480. https://doi.org/10.1037/h0054328

    Article  Google Scholar 

  • Damasevicius R, Vasiljevas M, Martisius I, Jusas V, Birvinskas D, Wozniak M (2015) BoostEMD: an extension of EMD method and its application for denoising of EMG signals. Electron Electr Eng 21(6):57–61

    Google Scholar 

  • Damaševičius R, Napoli C, Sidekerskienė T, Woźniak M (2017) IMF mode demixing in EMD for jitter analysis. J Comput Sci 22:240–252

    Article  Google Scholar 

  • Daubechies I, Lu J, Wu H-T (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmon Anal 30(2):243–261

    Article  MathSciNet  Google Scholar 

  • El Centro earthquake data. Available: http://www.vibrationdata.com/elcentro.htm

  • Fernández Rodríguez A, de Santiago Rodrigo L, López Guillén E, Rodríguez Ascariz JM, Miguel Jiménez JM, Boquete L (2018) Coding Prony’s method in MATLAB and applying it to biomedical signal filtering. BMC Bioinform 19(1). https://doi.org/10.1186/s12859-018-2473-y

  • Hernandez-Ortega MA, Messina AR (2018) Nonlinear power system analysis using Koopman mode decomposition and perturbation theory. IEEE Trans Power Syst 33(5):5124–5134. https://doi.org/10.1109/TPWRS.2018.2815587

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary time series analysis. Proc R Soc Lond 454:903–995

    Article  Google Scholar 

  • Jaber AM, Ismail MT, Altaher AM (2014) Empirical mode decomposition combined with local linear quantile regression for automatic boundary correction. Abstr Appl Anal 8:731827

    MathSciNet  MATH  Google Scholar 

  • Kedem B (1994) Time series analysis by higher order crossings. IEEE Press, Piscataway

    Google Scholar 

  • Kerschen G, Golinval J, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41(1–3):147–169

    Article  MathSciNet  Google Scholar 

  • Kumaresan R, Wang Y (2001) On the duality between line-spectral frequencies and zero-crossings of signals. IEEE Trans Speech Audio Process 9(4):458–461. https://doi.org/10.1109/89.917690

    Article  Google Scholar 

  • Lian J, Liu Z, Wang H, Dong X (2018) Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mech Syst Signal Process 107:53–77. https://doi.org/10.1016/j.ymssp.2018.01.019

    Article  Google Scholar 

  • Liu Z, He Q, Chen S, Dong X, Peng Z, Zhang W (2019) Frequency-domain intrinsic component decomposition for multimodal signals with nonlinear group delays. Signal Process 154:57–63. https://doi.org/10.1016/j.sigpro.2018.07.026

    Article  Google Scholar 

  • Okamura S (2011) The short time fourier transform and local signals. Dissertations. Paper 58

    Google Scholar 

  • Raz G, Siegel I (1992) Modeling and simulation of FM detection by zero-crossing in the presence of noise and FH interference. IEEE Trans Broadcast 38(9):192–196

    Article  Google Scholar 

  • Rios RAÃ, de Mello RF (2012) A systematic literature review on decomposition approaches to estimate time series components. INFOCOMP 11(3–4):31–46

    Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656(1):5–28

    Article  MathSciNet  Google Scholar 

  • Sidekerskienė T, Woźniak M, Damaševičius R (2017) Nonnegative matrix factorization based decomposition for time series modeling. In: Computer information systems and industrial management, CISIM 2017, Lecture Notes in Computer Science, pp 604–613

    Google Scholar 

  • Sidibe S, Niang O, Ngom NF (2019) Auto-adaptive signal segmentation using spectral intrinsic decomposition. In: Third international congress on information and communication technology. Advances in intelligent systems and computing, vol 797. Springer, Singapore, pp 553–561

    Google Scholar 

  • Singh P, Joshi SD, Patney RK, Saha K (2015) The Hilbert spectrum and the energy preserving empirical mode decomposition. arXiv preprint arXiv:1504.04104

  • Van Huffel S, Chen H, Decanniere C, Vanhecke P (1994) Algorithm for time-domain NMR data fitting based on total least-squares. J Magn Reson Ser A 110:228–237

    Article  Google Scholar 

  • Venkatappareddy P, Lall B (2017) Characterizing empirical mode decomposition algorithm using signal processing techniques. Circuits Syst Signal Process 37(7):2969–2996. https://doi.org/10.1007/s00034-017-0701-8

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng J, Pan H, Liu T, Liu Q (2018) Extreme-point weighted mode decomposition. Signal Process 142:366–374

    Article  Google Scholar 

  • Zierhofer CM (2017) A nonrecursive approach for zero crossing based spectral analysis. IEEE Signal Process Lett 24(7):1054–1057. https://doi.org/10.1109/LSP.2017.2706358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Sidekerskienė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidekerskienė, T., Damaševičius, R., Woźniak, M. (2020). Zerocross Density Decomposition: A Novel Signal Decomposition Method. In: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. (eds) Data Science: New Issues, Challenges and Applications. Studies in Computational Intelligence, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-39250-5_13

Download citation

Publish with us

Policies and ethics