Skip to main content

Synthesis of Pigment-Mediated Nanoparticles and Its Pharmacological Applications

  • Chapter
  • First Online:
Green Nanoparticles

Abstract

Microbial pigments have great interest within the healthcare industry, as they possess immunosuppressive, antifungal, antiproliferative properties, induce apoptosis, and may have potential for medical applications. The microbes such as Micrococcus, Bacillus, Rhodotorula, Monascus, Phaffia, Sarcina, and Achromobacter have the capability to produce different pigments. Biosynthesis of microbial pigments has been greatly underexplored and a multitude of potentially useful pigments still await discovery. Only less than 1% of the microbial community is estimated to be cultivated in the laboratory and vast diversity of microbial pigments and their encoding biosynthetic gene clusters remain to be exploited. The expansion of eco-friendly technologies in pigment synthesis is of considerable importance to expand their biological applications. Nanotechnology is presently employed as a tool to explore the darkest avenues of medical sciences to combat diseases caused by drug-resistant microbes. This chapter provides the state-of-art knowledge on the synthesis of nanoparticles from pigments and their pharmacological applications. The current limits and future forecasts for the synthesis of pigment-mediated nanoparticles by microorganisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhalim MAK, Moussa SAA, Qaid HAY, Al-Ayed MS (2018) Effect of melanin on gold nanoparticle induced hepatotoxicity and lipid peroxidation in rats. Int J Nanomedicine 13:5207–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Actis L, Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK, Ong JL (2015) Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26:215

    Article  PubMed  CAS  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  • Ajayan PM (2004) Nanotechnology: how does a nanofibre grow? Nature 42:402–403

    Article  CAS  Google Scholar 

  • Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles—a practical approach. Iranian J Mater Sci Eng 8(2):48–56

    CAS  Google Scholar 

  • Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S (2013a) Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater Lett 95:149–152

    Article  CAS  Google Scholar 

  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013b) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Arulselvi IP, Umamaheswari S, Sharma RG, Kartik C, Jayakrishna C (2014) Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. J Food Process Technol 5:292–310

    Google Scholar 

  • Assadpour E, Jafari SM (2019) A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 59:3129–3151

    Article  CAS  PubMed  Google Scholar 

  • Baraka A, Dickson S, Gobara M, El-Sayyad GS, Zorainy M, Awaad MI, Hatem H, Kotb MM, Tawfic AF (2017) Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem Pap 71(11):2271–2281

    Article  CAS  Google Scholar 

  • Bhatt PC, Srivastava P, Pandey P, Khan W, Panda BP (2016) Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Adv 6(12):10001–10010

    Article  Google Scholar 

  • Bridelli MG, Ciati A, Crippa PR (2006) Binding of chemicals to melanins re-examined: adsorption of some drugs to the surface of melanin particles. Biophys Chem 119(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila MA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotech Environ Eng 2:18

    Article  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  PubMed  CAS  Google Scholar 

  • El-Naggar NEA, Hussein MH, El-Sawah AA (2017) Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci Rep 7(10844):1–20

    Google Scholar 

  • El-Zahry MR, Mahmoud A, Refaat IH, Mohamed HA, Bohlmann H, Lendl B (2015) Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta 138:183–189

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Drechsler M, Mariani P, Panico AM, Cardile V, Crascì L, Puglia C (2017) Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mat Sci Eng C 71:669–677

    Article  CAS  Google Scholar 

  • Fierascu I, Bunghez IR, Fierascu RC, Ion RM, Dinu Pîrvu CE, Nuta D (2014) Characterization and antioxidant activity of phytosynthesized silver nanoparticles using Calendula officinalis extract. Farmacia 62:129–136

    CAS  Google Scholar 

  • Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9:373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using E.coli. Colloid Surf B Biointerfaces 74:328

    Article  CAS  PubMed  Google Scholar 

  • Horak V, Gillette JR (1971) A study of the oxidation-reduction state of synthetic 3,4-dihydroxy-DL-phenylalanine melanin. Mol Pharmacol 7(4):429–433

    CAS  PubMed  Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75(1):R50–R57

    Article  CAS  PubMed  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari SM, McClements DJ (2017) Nanotechnology approaches for increasing nutrient bioavailability. Adv Food Nutr Res 81:1–30

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Sharma G, Thakur K, Raza K, Shivhare US, Ghoshal G, Katare OP (2019) Beta-carotene-encapsulated solid lipid nanoparticles (BC-SLNs) as promising vehicle for cancer: an investigative assessment. AAPS PharmSciTech 20(3):100.

    Google Scholar 

  • Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19:661–666

    Article  Google Scholar 

  • Jixian G, Yanfei R, Jianfei Z, Zheng L, Qiujin L, Huiqin L (2017) Microbial synthesis preparation and application of red nano-pigment dye liquor for cotton. Faming Zhuanli Shenqing, CN106434757 A 20170222

    Google Scholar 

  • Jomova K, Valko M (2013) Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem 70:102–110

    Article  CAS  PubMed  Google Scholar 

  • Kampers FWH (2008) Opportunities for bionanotechnology in food and the food industry. In: Reisner DE, Bronzino JD (eds) Bionanotechnology: global prospects. CRC Press, Boca Raton, FL, pp 79–90

    Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trend Biotechnol 31(4):240–248

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Angulo Y, Cumbal L (2016) Green synthesis of silver nanoparticles using natural dyes of cochineal. J Clust Sci 27:703–713

    Article  CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Li J, Rong K, Zhao H, Li F, Lu Z, Chen R (2013) Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J Nanosci Nanotechnol 13:6806–6813

    Article  PubMed  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974

    Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interf Sci 134–135:167–174

    Article  CAS  Google Scholar 

  • Mandal D, Kumar Dash S, Das B, Chattopadhyay S, Ghosh T, Das D, Roy S (2016) Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother 83:548–558

    Article  CAS  PubMed  Google Scholar 

  • Manikprabhu D, Lingappa K (2013a) γ Actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi. Saudi J Biol Sci 20:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikprabhu D, Lingappa K (2013b) Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res 6:255–260

    CAS  Google Scholar 

  • Manikprabhu D, Lingappa K (2013c) Microwave assisted rapid biobased synthesis of gold nanorods using pigment produced by Streptomyces coelicolor klmp33. Acta Metall Sin (Engl Lett) 26:613–617

    Article  CAS  Google Scholar 

  • Manikprabhu D, Lingappa K (2014) Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33pigment: an antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli. Mater Sci Eng C 45:434–437

    Article  CAS  Google Scholar 

  • Mubarak Ali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Pettibone JM, Grassian VH (2012) Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46(13):7001–7010

    Article  CAS  PubMed  Google Scholar 

  • Murthy BS, Shankar P, Raj B, Rath BB, Murday J (2012) Concerns and challenges of nanotechnology. In: Text book of nanoscience and nanotechnology. Springer, pp 214–223

    Google Scholar 

  • Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed Nanotechnol Biol Med 4(3):241–251

    Article  CAS  Google Scholar 

  • Nair V, Sambre D, Joshi S, Bankar A, Kumar RA, Zinjarde S (2013) Yeast-derived melanin mediated synthesis of gold nanoparticles. J Bionanosci 7:159–168

    Article  CAS  Google Scholar 

  • Nasrollahi A, Paurshamsian KH, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimens 1:233–239

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Neville CE, Young IS, Gilchrist SE, McKinley MC, Gibson A, Edgar JD, Woodside JV (2013) Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age 35(6):2409–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Patil S, Sistla S, Bapat V, Jadhav J (2018) Melanin-mediated synthesis of silver nanoparticles and their affinity towards tyrosinase. Appl Biochem Microbiol 54(2):163–172

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. 2014:1–12

    Google Scholar 

  • Pennycook TJ, McBride JR, Rosenthal SJ, Pennycook SJ, Pantelides ST (2012) Dynamic fluctuations in ultrasmall nanocrystals induce white light emission. Nano Lett 12(6):3038–3042

    Article  CAS  PubMed  Google Scholar 

  • Perna G, Frassanito MC, Palazzo G (2009) Fluorescence spectroscopy of synthetic melanin in solution. J Lumin 129(1):44–49

    Article  CAS  Google Scholar 

  • Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae and their antibacterial effect. Adv Nat Sci Nanosci Nanotechnol 8:045016

    Article  CAS  Google Scholar 

  • Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22(2):736–741

    Article  CAS  PubMed  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Rao MPN, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microiol 8:1113

    Article  Google Scholar 

  • Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nano 6:74

    Google Scholar 

  • Rostamabadi H, Falsafi SR, Jafari SM (2019) Nanoencapsulation of carotenoids within lipid-based nanocarriers. J Control Release 298:38–67

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, Abdollahi Y, Bagheri S, Abdolmohammadi S, Usman MS, Zidan M (2012) Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17:8506–8517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Neupane YR, Panda BP, Kohli K (2017) Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J Microencapsul 34(4):416–429

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) Antibacterial activity of synthesized silver nanoparticles from tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. J Nanomed Nanotechnol 5:192

    Google Scholar 

  • Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 97(7):1055–1059

    CAS  Google Scholar 

  • Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catalysis 49(3–4):126–135

    Article  CAS  Google Scholar 

  • Srilekha V, Krishna G, Seshasrinivas V, Singaracharya MA (2018) Evaluation of wound healing and anti-inflammatory activity of a marine yellow pigmented bacterium, Micrococcus sp. Ind J Geo Marine Sci 47(12):2454–2464

    Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Vadlapudi V, Kaladhar DSVGK (2014) Review: green synthesis of silver and gold nanoparticles. Middle-East J Sci Res 19(6):834–842

    Google Scholar 

  • Venil CK, Sathishkumar P, Malathi M, Usha R, Jayakumar R, Yusoff ARM, Ahmad WA (2016) Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater Sci Eng C 59:228–234

    Article  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    Article  CAS  Google Scholar 

  • Walk AM, Khan NA, Barnett SM, Raine LB, Kramer AF, Cohen NJ, Hillman CH (2017) From neuro-pigments to neural efficiency: the relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int J Psychophysiol 118:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Qin F (2015) Modulating effect oflipid bilayer–carotenoid interactions on the property of liposome encapsulation. Colloid Surf B Biointerfaces 128:172–180

    Article  CAS  PubMed  Google Scholar 

  • Yacam’an MJ, Ascencio JA, Liu HB, GardeaTorresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. C.K. Venil thanks the UGC for awarding the Dr. D.S. Kothari Postdoctoral Fellowship (BL/17-18/0479). Also, the authors thank Anna University, Regional Campus – Coimbatore, for providing necessary facilities to carry out the project work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venil, C.K., Devi, P.R., Dufossé, L. (2020). Synthesis of Pigment-Mediated Nanoparticles and Its Pharmacological Applications. In: Patra, J., Fraceto, L., Das, G., Campos, E. (eds) Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39246-8_17

Download citation

Publish with us

Policies and ethics