Skip to main content

Biomedical Applications of Nanoparticles Synthesized from Mushrooms

  • Chapter
  • First Online:
Green Nanoparticles

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

This chapter aims to distinguish the synthesizing metallic nanoparticles from edible and medicinal mushrooms in terms of so-called “myconanotechnology.” Mycomaterials have been used as a mycoreducer to produce green metallic nanoparticles. Mycomaterials include crude extracts like extracts of fruiting bodies, fungal mycelia and free-cell filtrate, or purified matters like polysaccharides, enzymes/proteins, and polysaccharides–protein complexes. Green chemistry methods have attempted to mycosynthesize AgNPs, AuNPs, FeNPs, SeNPs, CdSNPs, ZnSNPs, and PaNPs using mycological materials by various approaches. The green mushroom nanoparticles (Mushroom NPs) have been investigated as antibacterial, antifungal, anticandidal, antioxidant, anticancer, and antitumor agents. Generally, Pleurotus AgNPs have higher synthesis and wider therapeutic applications among mushrooms. The medical role of all synthesized nanoparticles is due to their unique characteristics such as nanosize, crystalline nature, and ecofriendly agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Bahrani R, Raman J, Lakshmanan H et al (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25. https://doi.org/10.1016/j.matlet.2016.09.069

    Article  CAS  Google Scholar 

  • Al-Bahrani RM, Muayad S, Majeed A, Owaid MN (2018) Phyto-fabrication, characteristics and anti-candidal effects of silver nanoparticles from leaves of Ziziphus mauritiana Lam. Acta Pharm Sci 56:85–92. https://doi.org/10.23893/1307-2080.APS.05620

    Article  CAS  Google Scholar 

  • Anthony K, Murugan M, Jeyaraj M et al (2014) Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli and B. subtilis. J Ind Eng Chem 20:2325–2331. https://doi.org/10.1016/j.jiec.2013.10.008

    Article  CAS  Google Scholar 

  • Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090. https://doi.org/10.1007/s12257-014-0071-z

    Article  CAS  Google Scholar 

  • Atila F, Owaid MN, Shariati MA (2017) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 7:281–286. https://doi.org/10.15414/jmbfs.2017/18.7.3.281-286

    Article  CAS  Google Scholar 

  • Balashanmugam P, Santhosh S, Giyaullah H, Balakumaran MD (2013) Mycosynthesis, characterization and antibacterial activity of silver nanoparticles from Microporus xanthopus: a macro mushroom. Int J Innov Res Sci Eng Technol 2:6262–6270

    Google Scholar 

  • Bhat R, Deshpande R, Ganachari SV et al (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl 2011. https://doi.org/10.1155/2011/650979

  • Bhat R, Sharanabasava VG, Deshpande R et al (2013) Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B Biol 125:63–69. https://doi.org/10.1016/j.jphotobiol.2013.05.002

    Article  CAS  Google Scholar 

  • Borovaya M, Pirko Y, Krupodorova T et al (2015) Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol Biotechnol Equip 29:1156–1163. https://doi.org/10.1080/13102818.2015.1064264

    Article  CAS  Google Scholar 

  • Chan YS, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33:282–288. https://doi.org/10.1016/j.msec.2012.08.041

    Article  CAS  Google Scholar 

  • Chang S-T, Miles PG (2004) Mushrooms cultivation, nutritional value, medicinal effect and environmental impact, 2nd edn. CRC Press LLC, USA

    Google Scholar 

  • Debnath G, Das P, Saha AK (2019) Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. BioNanoScience 9:611–619. https://doi.org/10.1007/s12668-019-00650-y

  • Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Open Access Sci Reports 1:10–14. https://doi.org/10.4172/scientificreports.5

    Article  Google Scholar 

  • Dhamodharan G, Mirunalini S (2012) Dose response study of Agaricus bisporus (white button mushroom) and its encapsulated chitosan nanoparticles against 7,12 dimethylbenz(a)anthracene induced mammary carcinogenesis in female Sprague-dawley rats. Int J Pharm Pharm Sci 4:348–354

    Google Scholar 

  • Dhamodharan G, Mirunalini S (2013) A detail study of phytochemical screening, antioxidant potential and acute toxicity of Agaricus bisporus extract and its chitosan loaded nanoparticles. J Pharm Res 6:818–822. https://doi.org/10.1016/j.jopr.2013.07.025

    Article  CAS  Google Scholar 

  • Dhanasekaran D, Latha S (2013) Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus. 37–41. https://doi.org/10.1080/17458080.2011.577099

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemios-motic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  Google Scholar 

  • Egorova EM, Kaba SI, Kubatiev AA (2016) Toxicity of silver nanoparticles obtained by bioreduction as studied on malignant cells: is it possible to create a new generation of anticancer remedies? In: Nanobiomaterials in cancer therapy. Chennai, India. Elsevier, pp 505–542

    Google Scholar 

  • El-Batal AI, Elkenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles $. Biotechnol Rep 5:31–39. https://doi.org/10.1016/j.btre.2014.11.001

    Article  Google Scholar 

  • Elumalai S, Devika R, Arumugam P, Kasinathan K (2012) Extracellular biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. J Nanosci Nanoeng Appl 1:557. https://doi.org/10.4172/scientificreports.557

  • Eskandari-Nojehdehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J (2016) Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity. Nanotechnol Rev 5:537–548. https://doi.org/10.1515/ntrev-2016-0064

    Article  CAS  Google Scholar 

  • Fu M, Li Q, Sun D et al (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese J Chem Eng 14:114–117

    Article  CAS  Google Scholar 

  • Gurunathan S, Rraman J, Abd Malek S et al (2015) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413. https://doi.org/10.2147/IJN.S51881

    Article  CAS  Google Scholar 

  • Ismail AFM, Ahmed MM, Salem AAM (2015) Biosynthesis of silver nanoparticles using mushroom extracts: induction of apoptosis in HepG2 and MCF-7 cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. J Pharm Biomed Sci 5:1–9

    CAS  Google Scholar 

  • Janga JH, Jeonga SC, Kimb JH et al (2011) Characterization of a new antihypertensive angiotensin i-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem 127:412–418

    Article  Google Scholar 

  • Karwa A, Gaikwad S, Rai M (2011) Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt .: Fr.) P. Karst. and their role as antimicrobials and antibiotic Activit … Mycosynthesis of silver nanoparticles using Lingzhi or Reishi. 13:483. https://doi.org/10.1615/IntJMedMushr.v13.i5.80

  • Kaur G, Kalia A, Kapoor S et al (2013) Scanning electron microscopy of Pleurotus ostreatus in response to inorganic selenium. In: Indian Mushroom Conference. Ludhiana, pp 17–18

    Google Scholar 

  • Kaur T, Kapoor S, Kalia A (2018) Synthesis of silver nanoparticles from Pleurotus florida, characterization and analysis of their antimicrobial activity. Int J Curr Microbiol App Sci 7:4085–4095

    Article  Google Scholar 

  • Khan FA, Zahoor M, Jalal A, Rahman AU (2016) Green synthesis of silver nanoparticles by using Ziziphus nummularia leaves aqueous extract and their biological activities. J Nanomater 2016:8

    Google Scholar 

  • Latha S (2010) Extracellular biosynthesis, characterization and in vitro antimicrobial potential of silver nanoparticles using myconanofactoris. Bharathidasan University, Tiruchirappalli

    Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1:39–49

    CAS  Google Scholar 

  • Meng TX, Ishikawa H, Shimizu K et al (2011) Evaluation of biological activities of extracts from the fruiting body of Pleurotus citrinopileatus for skin cosmetics. J Wood Sci 57:452–458

    Article  CAS  Google Scholar 

  • Mirunalini S, Arulmozhi V, Deepalakshmi K, Krishnaveni M (2012) Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not Sci Biol 4:55–61

    Article  CAS  Google Scholar 

  • Mohanta Y, Singdevsachan S, Parida U et al (2016) Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol 10:184–189

    Article  Google Scholar 

  • Musa SF, Yeat S, Mohd Z et al (2017) Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. https://doi.org/10.1002/jsfa.8573

  • Nagajyothi PC, Sreekanth TVM, Lee J, Lee KD (2013) Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B Biol 130:299. https://doi.org/10.1016/j.jphotobiol.2013.11.022

    Article  CAS  Google Scholar 

  • Narasimha G, Praveen B, Mallikarjuna K, Raju D (2011) Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. Int J Nano Dimens 2:29–36

    CAS  Google Scholar 

  • Nasrin T, Roy S, Das TK (2014) Aspergillus foetidus mediated biosynthesis of CdS nano particles and its characterization. Int J Innov Res Sci Eng 2:633–639

    Google Scholar 

  • Nithya R (2012) A novel biological approach for the synthesis of silver nanoparticles using Brevibacterium linens, Pleurotus sajor caju and Aspergillus niger- a comparative study and their applications. Bharathiar University

    Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Nivedita L, Singh THC, Singh NI (2009) Cultivation of Pleurotus spp. on agro-forest wastes of Manipur. Indian Phytopathol 62:106–108

    Google Scholar 

  • Numata M, Hasegawa T, Fujisawa T et al (2004) β-1,3-Glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly (aniline) nanofiber structures. Org Lett 6:4447–4450. https://doi.org/10.1021/ol0483448

    Article  CAS  PubMed  Google Scholar 

  • Owaid MN (2013) Testing efficiency of different agriculture media in growth and production of four species of oyster mushroom Pleurotus and evaluation the bioactivity of tested species

    Google Scholar 

  • Owaid MN, Ibraheem IJ (2017) Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed 9:5–23. https://doi.org/10.1515/ejnm-2016-0016

    Article  CAS  Google Scholar 

  • Owaid MN, Al-Saeedi SSS, Al-Assaffii IAA (2015a) Antimicrobial activity of mycelia of oyster mushroom species (Pleurotus spp.) and their liquid filtrates (in vitro). JOMB 4:376. https://doi.org/10.12720/jomb.4.5.376-380

    Article  Google Scholar 

  • Owaid MN, Raman J, Lakshmanan H et al (2015b) Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater Lett 153:186–190. https://doi.org/10.1016/j.matlet.2015.04.023

    Article  CAS  Google Scholar 

  • Owaid MN, Al-Saeedi SSS, Abed IA (2017a) Biosynthesis of gold nanoparticles using yellow oyster mushroom Pleurotus cornucopiae var. citrinopileatus. Environ Nanotechnol Monit Manag 8:157–162. https://doi.org/10.1016/j.enmm.2017.07.004

    Article  Google Scholar 

  • Owaid MN, Al-Saeedi SSS, Al-Assaffii IAA (2017b) Antifungal activity of cultivated oyster mushrooms on various agro-wastes. Summa Phytopathol 43:9. https://doi.org/10.1590/0100-5405/2069

    Article  Google Scholar 

  • Owaid MN, Barish A, Shariati MA (2017c) Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric 2:537–543. https://doi.org/10.1515/opag-2017-0056

    Article  Google Scholar 

  • Owaid MN, Muslim RF, Hamad HA (2018) Mycosynthesis of silver nanoparticles using Terminia sp. desert truffle, Pezizaceae, and their antibacterial activity. Jordan J Biol Sci 11:401–405

    CAS  Google Scholar 

  • Owaid MN, Zaidan TA, Muslim RF (2019) Biosynthesis, characterization and cytotoxicity of zinc nanoparticles using Panax ginseng roots, Araliaceae. Acta Pharm Sci 57:19–32. https://doi.org/10.23893/1307-2080.APS.05702

    Article  CAS  Google Scholar 

  • Patra S, Patra P, Maity KK et al (2013) A heteroglycan from the mycelia of Pleurotus ostreatus: structure determination and study of antioxidant properties. Carbohydr Res 368:16–21. https://doi.org/10.1016/j.carres.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Sasikumar C, Singh A (2015a) Fabrication of silver nanoparticles synthesized from Ganoderma lucidum into the cotton fabric and its antimicrobial property. Int J Pharm Pharm Sci 7:53–56

    CAS  Google Scholar 

  • Paul S, Singh ARJ, Sasikumar CS (2015b) Green synthesis of bio-silver nanoparticles by Parmelia perlata, Ganoderma lucidum and Phellinus igniarius & their fields of application. Indian J Res Pharm Biotechnol 5674:100–110

    Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au – Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc 73:374–381. https://doi.org/10.1016/j.saa.2009.02.037

    Article  CAS  Google Scholar 

  • Prabhusaran N, Ar S, Radhakrishna L et al (2016) Extracellular biosynthesis of silver nanoparticles using bacterial sources and its pathogenecity inhibition assay. Int J Pharma Res Health Sci 4:1080–1085

    CAS  Google Scholar 

  • Rahi DK, Barwal M (2014) Potential of Pleurotus sajor caju to synthesize Silver nanoparticles and evaluation of antibacterial activity and their role as antibiotic activity enhancer. KAVAKA 43:74–78

    Google Scholar 

  • Rahimi G, Alizadeh F, Khodavandi A (2016) Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Trop J Pharm Res 15:371–375

    Article  CAS  Google Scholar 

  • Raman J, Lakshmanan H, John P et al (2015) Neurite outgrowth stimulatory effects of mycosynthesized AuNPs from Hericium Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus ( Bull.: Fr.) Pers. on pheochromocytoma ( PC-12 ) cells. Int J Nanomedicine 10:5853–5863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramana J, Reddya GR, Lakshmanana H et al (2015) Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on. Process Biochem 50:140–147. https://doi.org/10.1016/j.procbio.2014.11.003

    Article  CAS  Google Scholar 

  • Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (Berk.) Sacc.: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Biostruct 6:1289–1299

    Google Scholar 

  • Sanghi R, Verma P (2009a) Biomimetic synthesis and characterization of protein capped silver nanoparticle. Biomagn Res Technol 100:501–504

    CAS  Google Scholar 

  • Sanghi R, Verma P (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891. https://doi.org/10.1016/j.cej.2009.08.006

    Article  CAS  Google Scholar 

  • Sarkar J, Kalyan S, Laskar A et al (2013) Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quel. Mater Lett 92:313–316. https://doi.org/10.1016/j.matlet.2012.10.130

    Article  CAS  Google Scholar 

  • Sastry M, Mayyaa KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surf A 127:221–228

    Article  CAS  Google Scholar 

  • Sen I, Maity K, Islam SS (2013a) Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym 91:518–528. https://doi.org/10.1016/j.carbpol.2012.08.058

    Article  CAS  PubMed  Google Scholar 

  • Sen IK, Mandal AK, Chakraborti S et al (2013b) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449

    Article  CAS  Google Scholar 

  • Senapati US, Sarkar D (2014) Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotus ostreatus. Indian J Phys 88:557–562. https://doi.org/10.1007/s12648-014-0456-z

    Article  CAS  Google Scholar 

  • Shivashankar M, Premkumari B, Chandan N (2013) Biosynthesis, partial characterization and antimicrobial activities of silver nanoparticles from Pleurotus species. Int J Integr Sci Innov Technol 2:13–23

    CAS  Google Scholar 

  • Sudhakar T, Nanda A, Babu SG et al (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharm Tech Res 6:1718–1723

    CAS  Google Scholar 

  • Sujatha S, Tamilselvi S, Subha K, Panneerselvam A (2013) Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int J Curr Microbiol App Sci 2:605–614

    Google Scholar 

  • Sujatha S, Kanimozhi G, Panneerselvam A (2015) Synthesis of silver nanoparticles from Lentinula edodes and antibacterial activity. Int J Pharm Sci Rev Res 33:189–191

    CAS  Google Scholar 

  • Sujatha S, Kanimozhi G, Panneerselvam A (2016) Synthesis of silver nanoparticle and its antibacterial activity of Schizophyllum commune. Int J Curr Res 8:28147–28149

    CAS  Google Scholar 

  • Ul-Haq M, Rathod V, Singh D et al (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol Int J 5:1–8

    Google Scholar 

  • Vetchinkina EP, Loshchinina EA, Burov AM, E N V (2013) Bioreduction of gold (iii) ions from hydrogen tetrachloaurate to the elementary state by edible cultivated medicinal xylotrophic Basidiomycetes belonging to various systematic groups and molecular mechanisms of gold nanoparticles biological synthesis. Sci Pract J Heal Life Sci 4:51–56

    Google Scholar 

  • Vigneshwaran N, Kathe A, Varadarajan P et al (2007) Silver-protein (core–shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117

    Article  CAS  Google Scholar 

  • Wong K (2014) Preparation of highly stable selenium nanoparticles with strong anti-tumor activity using tiger milk mushroom. Report, Innovation and Technology Development Office, Polytechnic University, pp 1

    Google Scholar 

  • Wu H, Kumar S, Shastri L (2010) Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta 82:540–547. https://doi.org/10.1016/j.talanta.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Li X, Liu W et al (2012) Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative. J Mater Chem 22:9602–9610. https://doi.org/10.1039/c2jm16828f

    Article  CAS  Google Scholar 

  • Wu H, Zhu H, Li X et al (2013a) Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: an effect enhanced by polysaccharide–protein complexes from Polyporus rhinocerus. J Agric Food Chem 61:9859–9866

    Article  CAS  Google Scholar 

  • Wu S, Lan Y, Wu Z et al (2013b) Bioresource Technology Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar. 148:596–600. https://doi.org/10.1016/j.biortech.2013.08.122

  • Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803. https://doi.org/10.1007/s11274-014-1703-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nadhim Owaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owaid, M.N. (2020). Biomedical Applications of Nanoparticles Synthesized from Mushrooms. In: Patra, J., Fraceto, L., Das, G., Campos, E. (eds) Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39246-8_14

Download citation

Publish with us

Policies and ethics