Skip to main content

Biosynthesis of Nanoparticles and Their Potential Application in Food and Agricultural Sector

  • Chapter
  • First Online:
Green Nanoparticles

Abstract

Nanotechnology is an important and emerging interdisciplinary research field having tremendous applications in different aspects of science including agriculture, food, and industry. Biological biomolecules can be a good source of green technology where it plays key role in the synthesis of nanoparticles having different shapes and sizes. Biosynthesized nanoparticle will provide cost-effective, eco-friendly, and non-toxic systems to the environments. Nanotechnology and its application in different fields including food and agriculture sector have revolutionized the development in science and technology. Food science and food technology is far developing in the last few decades due to implementation of inorganic and metal nanoparticles in food packaging and storage to extend shelf-life of post-harvest produce. The immediate consequences of green revolution where blindly used of chemical pesticides and fertilizers have been encountered in maximizing environmental health hazard and in other way incoming of nanoparticles shows remarkable changes in the agriculture with cost-effective and environmentally healthy. The use of nanoparticle in agriculture sector started when the researcher finds that the conventional practices and technologies are unable to fulfil the demand and yield of foods and furthermore, the technology will maintain the existing ecosystems by eliminating the pollution of water, minimizing the use of chemical fertilizers and pesticides. Moreover, food security and safety, enrichment of nutrients, reducing nutrient runoff, and providing more absorption are some of the potential incorporation of nanotechnology. However, nanotechnology intervention in food and agriculture sector to enable to sustain the environment as a whole is a big challenge. This chapter discussed the various methods of biological synthesis of nanoparticles specifically gold and silver and their application in food and agriculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    Article  CAS  Google Scholar 

  • Babu MG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B: Biointerfaces 74(1):191–195

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 68(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B: Biointerfaces 71(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47(2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Campos EVR, De Oliveira JL, Da Silva CMG, Pascoli M, Pasquoto T, Lima R et al (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep 5:13809

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  • Chaudhry N, Dwivedi S, Chaudhry V, Singh A, Saquib Q, Azam A, Musarrat J (2018) Bio-inspired nanomaterials in agriculture and food: current status, foreseen applications and challenges. Microb Pathog 123:196–200

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596

    Article  CAS  Google Scholar 

  • Dennis ES, Ellis J, Green A, Llewellyn D, Morell M, Tabe L, Peacock WJ (2007) Genetic contributions to agricultural sustainability. Philos Trans R Soc Lond B Biol Sci 363(1491):591–609

    Article  PubMed Central  CAS  Google Scholar 

  • Dekkers S, Bouwmeester H, Bos PM, Peters RJ, Rietveld AG, Oomen AG (2013) Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicol 7(4):367–377.

    Google Scholar 

  • Diallo A, Doyle TB, Mothudi BM, Manikandan E, Rajendran V, Maaza M (2017) Magnetic behavior of biosynthesized Co3O4 nanoparticles. J Magn Magn Mater 424:251–255

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134

    Article  CAS  Google Scholar 

  • EFSA (2016) https://www.efsa.europa.eu/en/efsajournal/pub/5077

  • Feng T, Xiao Z, Tian H (2010) Recent patents on nano flavor preparation and its application. Recent Pat Food Nutr Agric 2(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin—incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86(2–3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Köller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981–6987

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11(8):1408–1417

    Article  CAS  Google Scholar 

  • He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Hilty FM, Knijnenburg JT, Teleki A, Krumeich F, Hurrell RF, Pratsinis SE, Zimmermann MB (2011) Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods. J Food Sci 76(1):N2–N10.

    Google Scholar 

  • Inbakandan D, Venkatesan R, Khan SA (2010) Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B: Biointerfaces 81(2):634–639

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanoforum report: nanotechnology in agriculture and food. Institute of Nanotechnology 2006:34–45

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823e1867

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces 77(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Thakur R, Kumar S, Dilbaghi N (2011) Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf Proc 1393(1):153–154

    Google Scholar 

  • Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9(1):33–38

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashigawa JM, Robles CA, Ricci MLM, Carmarán CC (2018) Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J Biol Sci 26(7):1331–1337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    Article  CAS  PubMed  Google Scholar 

  • Kouzegaran VJ, Farhadi K (2017) Green synthesis of Sulphur nanoparticles assisted by a herbal surfactant in aqueous solutions. Micro Nano Lett 12(5):329–334

    Article  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95

    Article  Google Scholar 

  • Krishnaraj C, Harper SL, Yun S-I (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). J Hazard Mater 301:480–491. https://doi.org/10.1016/j.jhazmat.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  • Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng 7(3):103146

    Article  CAS  Google Scholar 

  • Kwak JI, An YJ (2016) Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola). J Hazard Mater 315:110–116

    Article  CAS  PubMed  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330

    Article  CAS  PubMed  Google Scholar 

  • Mafuné F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105(22):5114–5120

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741

    Article  CAS  Google Scholar 

  • Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6(5):681–688

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Suzuki T, Tanaka M, Arakaki A (2007) Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol 25(4):182–188

    Article  CAS  PubMed  Google Scholar 

  • Matveeva NB, Egorova EM, Beilina SI, Lednev VV (2006) Chemotactic assay for biological effects of silver nanoparticles. Biophysics 51(5):758–763

    Article  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13(10):4519

    Article  CAS  Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18(1):83–86

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463

    Article  CAS  PubMed  Google Scholar 

  • Nadeem A, Naz S, Ali JS, Mannan A, Zia M (2019) Synthesis, characterization and biological activities of monometallic and bimetallic nanoparticles using Mirabilis jalapa leaf extract. Biotechnol Rep 22:e00338

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Panáček A, Kolář M, Večeřová R, Prucek R, Soukupova J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340

    Article  PubMed  CAS  Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    Article  CAS  Google Scholar 

  • Rajput N (2015) Methods of preparation of nanoparticles – a review. Int J Adv Eng Technol 7(6):1806

    Google Scholar 

  • Salunke BK, Sawant SS, Lee SI, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(13):5419–5427

    Article  CAS  PubMed  Google Scholar 

  • Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani KK, Minhas PS (2015) Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett 10(1):371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29(1):95–99

    Article  CAS  Google Scholar 

  • Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann GE, Schulz R, Bundschuh M (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270

    Article  CAS  PubMed  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Srivastava M, Kumar A, Pandey KD (2019) Biosynthesis of nanoparticles and applications in agriculture. In: Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Woodhead Publishing, India pp 199–217

    Google Scholar 

  • Sonkar SK, Roy M, Babar DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4(24):7670–7675

    Article  CAS  PubMed  Google Scholar 

  • Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V (2009) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124

    Article  PubMed  CAS  Google Scholar 

  • Sripriya N, Vasantharaj S, Mani U, Shanmugavel M, Jayasree R, Gnanamani A (2019) Encapsulated enhanced silver nanoparticles biosynthesis by modified new route for nano-biocatalytic activity. Biocatal Agric Biotechnol 18:101045

    Article  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Management Science: formerly. Pestic Sci 66(6):577–579

    CAS  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Thangamani N, Bhuvaneshwari N (2019) Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett 732:136587

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz, N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250. https://www.efsa.europa.eu/en/efsajournal/pub/5348

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yildiz N, Pala A (2012) Effects of small-diameter silver nanoparticles on microbial load in cow milk. J Dairy Sci 95(3):1119–1127

    Article  CAS  PubMed  Google Scholar 

  • You J, Zhang Y, Hu Z (2011) Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B: Biointerfaces 85(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Zhang BY, Tong Y, Singh S, Cai H, Huang JY (2019) Assessment of carbon footprint of nano-packaging considering potential food waste reduction due to shelf life extension. Resour Conserv Recycl 149:322–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, M.K., Singh, Y.D., Behera, R.K., Dhal, N.K. (2020). Biosynthesis of Nanoparticles and Their Potential Application in Food and Agricultural Sector. In: Patra, J., Fraceto, L., Das, G., Campos, E. (eds) Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39246-8_10

Download citation

Publish with us

Policies and ethics