Skip to main content

Analysis of Oscillator Behavior Under Multi-frequency Excitation for Oscillatory Neural Networks

  • Conference paper
  • First Online:
  • 445 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

Abstract

Problems of the oscillator behavior under quasiperiodic multi-frequency excitation are considered in the paper. The new concept of the multi-frequency synchronization is proposed as the natural extension of the traditional synchronization concept for the periodically excited oscillator. Derived analytical expressions and performed simulation examples demonstrate the consistency of the proposed concept. The investigations are based on the modified Kuramoto model of a single oscillator under a narrowband quasiperiodic excitation. Analytical results are obtained by multiple timescales methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kharola, A.: Artificial neural networks based approach for predicting LVDT output characteristic. Int. J. Eng. Manuf. (IJEM) 8(4), 21–28 (2018). https://doi.org/10.5815/ijem.2018.04.03

    Article  Google Scholar 

  2. Mohsen, A.A., Alsurori, M., Aldobai, B., Mohsen, G.A.: New approach to medical diagnosis using artificial neural network and decision tree algorithm: application to dental diseases. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 11(4), 52–60 (2019). https://doi.org/10.5815/ijieeb.2019.04.06

    Article  Google Scholar 

  3. Gupta, D.K., Goyal, S.: Credit risk prediction using artificial neural network algorithm. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 10(5), 9–16 (2018). https://doi.org/10.5815/ijmecs.2018.05.02

    Article  Google Scholar 

  4. Kuzmina, M., Manykin, E., Grichuk, E.: Oscillatory neural networks. In: Problems of Parallel Information Processing, p. 160. Walter de Gruyter GmbH, Berlin/Boston (2014)

    Google Scholar 

  5. Hoppensteadt, F.C., Izhikevich, E.M.: Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans. Neural Netw. 11(3), 734–738 (2000)

    Article  Google Scholar 

  6. Maffezzoni, P., Bahr, B., Zhang, Z., Daniel, L.: Oscillator array models for associative memory and pattern recognition. IEEE Trans. Circuits Syst. I Regul. Pap. 62(6), 1591–1598 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bonnin, M., Corinto, F., Gilli, M.: Periodic oscillations in weakly connected cellular nonlinear networks. IEEE Trans. Circuits Syst. I Regul. Pap. 55(6), 1671–1684 (2008). https://doi.org/10.1109/TCSI.2008.916460

    Article  MathSciNet  Google Scholar 

  8. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math Neurosci. 6(1), 2 (2016). https://doi.org/10.1186/s13408-015-0033-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhansali, P., Roychowdhury, J.: Injection locking analysis and simulation of weakly coupled oscillator networks. In: Li, P., Silveira, L.M., Feldmann, P. (eds.) Simulation and Verification of Electronic and Biological Systems, pp. 71–93. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0149-6_4

    Chapter  Google Scholar 

  10. Kumar, P., Verma, D., Parmananda, P.: Partially synchronized states in an ensemble of chemo-mechanical oscillators. Phys. Lett. A. 381(29), 2337–2343 (2017). https://doi.org/10.1016/j.physleta.2017.05.032

    Article  Google Scholar 

  11. Frolov, N.S., Goremyko, M.V., Makarov, V.V., Maksimenk, V.A., Hramov, A.E.: Numerical and analytical investigation of the chimera state excitation conditions in the Kuramoto-Sakaguchi oscillator network. In: Proceedings of SPIE 10063, Dynamics and Fluctuations in Biomedical Photonics XIV, 100631H (2017). https://doi.org/10.1117/12.2251702

  12. Asfar, K.R., Nayfeh, A.H., Mook, D.T.: Response of self-excite oscillation to multifrequency excitations. J. Sound Vib. 79(4), 589–604 (1981)

    Article  Google Scholar 

  13. El-Bassiouny, A.F.: Parametrically excited nonlinear systems: a comparison of two methods. Int. J. Math. Math. Sci. 32(12), 739–761 (2002). https://doi.org/10.1155/S0161171202007019

    Article  MathSciNet  MATH  Google Scholar 

  14. Malinowski, M., et al.: Towards on-chip self-referenced frequency-comb sources based on semiconductor mode-locked lasers. Micromachines 10(6), 391 (2019). https://doi.org/10.3390/mi10060391

    Article  Google Scholar 

  15. Kuznetsov, A.P., Sataev, I.R., Tyuryukina, L.V.: Synchronization of quasi-periodic oscillations in coupled phase oscillators. Tech. Phys. Lett. 36(5), 478–481 (2010). https://doi.org/10.1134/S1063785010050263

    Article  Google Scholar 

  16. Peleshchak, R., Lytvyn, V., Bihun, O., Peleshchak, I.: Structural transformations of incoming signal by a single nonlinear oscillatory neuron or by an artificial nonlinear neural network. Int. J. Intell. Syst. Appl. (IJISA) 11(8), 1–10 (2019). https://doi.org/10.5815/ijisa.2019.08.01

    Article  Google Scholar 

  17. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137–185 (2005). https://doi.org/10.1103/RevModPhys.77.137

    Article  Google Scholar 

  18. Gourary, M.M., Rusakov, S.G.: Analysis of oscillator ensemble with dynamic couplings. In: Hu, Z., Petoukhov, S., He, M. (eds.) Advances in Artificial Systems for Medicine and Education II, AIMEE 2018. Advances in Intelligent Systems and Computing, vol. 902. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12082-5_15

    Chapter  Google Scholar 

  19. Adler, R.: A study of locking phenomena in oscillators. Proc. IEEE 61(10), 1380–1385 (1973)

    Article  Google Scholar 

  20. Schilder, F., Vogt, W., Schreiber, S., Osinga, H.M.: Fourier methods for quasi-periodic oscillations. Int. J. Numer. Methods Eng. 67(5), 629–671 (2006)

    Article  MathSciNet  Google Scholar 

  21. Langella, R., Testa, A.: Amplitude and phase modulation effects of waveform distortion in power systems. Electr. Power Qual. Util. J. 13(1), 25–32 (2007)

    Google Scholar 

  22. Razavi, B.: A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004)

    Article  Google Scholar 

  23. Desroches, M., et al.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012). https://doi.org/10.1137/100791233

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 19-29-03012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Gourary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gourary, M.M., Rusakov, S.G. (2020). Analysis of Oscillator Behavior Under Multi-frequency Excitation for Oscillatory Neural Networks. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_5

Download citation

Publish with us

Policies and ethics