Skip to main content

Development of Matrix Methods for Genetic Analysis and Noise-Immune Coding

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

Abstract

The article discusses new methods of studying and using Hadamard matrices. This class of matrices is commonly used in developing AI systems, noise-immune coding of data and simulation of bioinformational entities. The relations between Hadamard matrices and hyper-complex numbers are discussed. A special attention is given to the new method of pre-orthogonal sequences for building multi-block Hadamard matrices of large orders. This method, due to its mathematical characteristics, should also be useful in modeling the noise-immunity features of genetic coding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, N.U., Rao, K.R.: Orthogonal Transforms for Digital Signal Processing. Springer, New York (1975)

    Book  Google Scholar 

  2. Sklar, B.: Digital Communication. Fundamentals and Applications. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  3. Petoukhov, S.V.: Matrix genetics, algebras of the genetic code, noise-immunity, 316 p. Regular and Chaotic Dynamics, Moscow (2008). (in Russian)

    Google Scholar 

  4. Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global, Hershey (2010)

    Book  Google Scholar 

  5. Seberry, J., Wysocki, B.J., Wysocki, T.A.: On some applications of Hadamard matrices. Metrica 62, 221–239 (2005)

    Article  MathSciNet  Google Scholar 

  6. Petoukhov, S.V., Petukhova, E.S.: On genetic unitary matrices and quantum-algorithmic genetics. In: Hu, Z., Petoukhov, S., He, M. (eds.) Advances in Artificial Systems for Medicine and Education II, AIMEE 2018. Advances in Intelligent Systems and Computing, vol. 902, pp. 103–115. Springer, Cham (2020)

    Google Scholar 

  7. Labunets, V., Rundblad, E., Astola, J.: Is the brain a ‘Clifford Algebra Quantum Computer’? In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  8. Petoukhov, S.V.: Symmetries of the genetic code, hypercomplex numbers and genetic matrices with internal complementarities. Symmetry: Cult. Sci. 23(3–4), 275–301 (2012)

    Google Scholar 

  9. Gsponer, A., Jean-Pierre Hurni, J.-P.: Quaternions in mathematical physics (2): Analytical bibliography. Submitted 6 July 2008. http://arxiv.org/abs/math-ph/0511092

  10. Baumert, L., Golomb, S.W., Marshall Jr., M.: Discovery of an Hadamard matrix of order 92. Bull. Amer. Math. Soc. 68, 237–238 (1962). Communicated by F. Bohnenblust, California Institute of Technology

    Article  MathSciNet  Google Scholar 

  11. Williamson, J.: Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 11, 65–81 (1944)

    Article  MathSciNet  Google Scholar 

  12. Balonin, N.A., Sergeev, M.B.: Helping Hadamard conjecture to become a theorem. Part 1. Informatsionnoupravliaiushchie sistemy [Inf. Control Syst.] (6), 2–13 (2018). https://doi.org/10.31799/1684-8853-2018-6-2-13. (in Russian)

  13. Balonin, N.A., Sergeev, M.B.: Helping Hadamard conjecture to become a theorem. Part 2. Informatsionnoupravliaiushchie sistemy [Inf. Control Syst.] (1), 2–10 (2019). https://doi.org/10.31799/1684-8853-2019-1-2-10. (in Russian)

  14. Ðoković, D.Ž.: Williamson matrices of order 4n for n = 33; 35; 39. Discrete Math. 115, 267–271 (1993)

    Article  MathSciNet  Google Scholar 

  15. Hadamard, J.: Résolution d’une question relative aux déterminants. Bulletin des sciences mathématiques 17, 240–246 (1893)

    MATH  Google Scholar 

  16. Balonin, N.A., Ðoković, D.Ž.: Symmetric Hadamard matrices of orders 268, 412, 436 and 604. Informatsionnoupravliaiushchie sistemy [Inf. Control Syst.] (4), pp. 2–8 (2018). https://doi.org/10.31799/1684-8853-2018-4-2-8. Accessed 23 Mar 2018. arXiv:1803.08787

  17. Ryser, H.J.: Combinatorial Mathematics. The Carus Mathematical Monographs, no. 14, 162 p. The Mathematical Association of America/Wiley, New York/Hoboken (1963)

    Google Scholar 

  18. Abuzin, L.V., Balonin, N.A., Ðoković, D.Ž., Kotsireas, I.S.: Hadamard matrices from Goethals-Seidel difference families with a repeated block. Informatsionnoupravliaiushchie sistemy [Inf. Control Syst.] (2019, in print)

    Google Scholar 

  19. Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to order 59. Des. Codes Cryptogr. 46, 343–352 (2008)

    Article  MathSciNet  Google Scholar 

  20. Di Matteo, O.: Methods for parallel quantum circuit synthesis, fault-tolerant quantum RAM, and quantum state tomography. A thesis for the degree of PhD in Physics-Quantum Information, Waterloo, Ontario, Canada, 38 p (2019). https://uwspace.uwaterloo.ca/bitstream/handle/10012/14371/DiMatteo_Olivia.pdf?sequence=3&isAllowed=y

  21. Angadi, S.A., Hatture, S.M.: Biometric person identification system: a multimodal approach employing spectral graph characteristics of hand geometry and palmprint. Int. J. Intell. Syst. Appl. (IJISA) (3), 48–58 (2016). http://www.mecs-press.org/ijisa/ijisa-v8-n3/IJISA-V8-N3-6.pdf

    Article  Google Scholar 

  22. Sahana, S.K., AL-Fayoumi, M., Mahanti, P.K.: Application of modified ant colony optimization (MACO) for multicast routing problem. Int. J. Intell. Syst. Appl. (IJISA) (4), 43–48 (2016). http://www.mecs-press.org/ijisa/ijisa-v8-n4/IJISA-V8-N4-5.pdf

    Article  Google Scholar 

  23. Algur, S.P., Bhat, P.: Web video object mining: a novel approach. Int. J. Intell. Syst. Appl. (IJISA) (4), 67–75 (2016). http://www.mecs-press.org/ijisa/ijisa-v8-n4/IJISA-V8-N4-8.pdf

    Article  Google Scholar 

  24. Hata, R., Akhand, M.A.H., Islam, M.Md., Murase, K.: Simplified real-, complex-, and quaternion-valued neuro-fuzzy learning algorithms. IJISA 10(5), 1–13 (2018). https://doi.org/10.5815/ijisa.2018.05.01

    Article  Google Scholar 

  25. Awadalla, M.H.A.: Spiking neural network and bull genetic algorithm for active vibration control. Int. J. Intell. Syst. Appl. (IJISA) 10(2), 17–26 (2018). https://doi.org/10.5815/ijisa.2018.02.02

    Article  Google Scholar 

  26. Abuljadayel, A., Wedyan, F.: An approach for the generation of higher order mutants using genetic algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(1), 34–35 (2018)

    Google Scholar 

  27. Petoukhov, S.V.: The system-resonance approach in modeling genetic structures. Biosystems 139, 1–11 (2016)

    Article  Google Scholar 

  28. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloud, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude for long-standing collaboration and support to professors Jennifer Seberry and Dragomir Ðoković. In technical work with the manuscript and references, T.V. Balonina was very helpful (find a more complete list of works on http://mathscinet.ru/tamara).

The work has been carried out with the support of Ministry of Education and Science of the Russian Federation for research within the development part of the scientific governmental task #2.2200.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Balonin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balonin, N.A., Sergeev, M.B., Petoukhov, S.V. (2020). Development of Matrix Methods for Genetic Analysis and Noise-Immune Coding. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_4

Download citation

Publish with us

Policies and ethics