Skip to main content

Chaotic Algorithms of Analysis of Cardiovascular Systems and Artificial Intelligence

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education III (AIMEE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

  • 461 Accesses

Abstract

Despite the intensive development of the dynamical systems theory and artificial intelligence, which is quite a powerful theoretical apparatus, an adequate description of chaotic processes at cardiovascular systems is a rather complicated problem. In this paper, the dynamical systems theory is applied to cardiovascular studies by processing the recorded signals with stochastic neural networks as well as dynamic chaos methods. The method of investigation is the reconstruction of dynamic systems attractor. Phase-temporal characteristics of human pulse waves were discussed, the new concept of the stochastic-graph of the pulse wave was shown. The attractor of heart pulse waves was reconstructed and its correlation dimension was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dumas, H.S.: The KAM Story – A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory. World Scientific Publishing (2014). ISBN 978-981-4556-58-3. Chapter 1: Introduction

    Google Scholar 

  2. Kac, M., Logan, J., Montroll, E.W., Lebowitz, J.L. (eds.): Fluctuation Phenomena. North-Holland, Amsterdam (1976)

    Google Scholar 

  3. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  4. Nichols, W.W.: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18(1 Pt 2), 3S–10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009. PMID 15683725

    Article  Google Scholar 

  5. Khazaee, A.: Heart beat classification using particle swarm optimization. Int. J. Intell. Syst. Appl. (IJISA) 5(6), 25–33 (2013)

    Article  Google Scholar 

  6. Queyam, A.B., Pahuja, S.K., Singh, D.: Doppler ultrasound based non-invasive heart rate telemonitoring system for wellbeing assessment. Int. J. Intell. Syst. Appl. (IJISA) 10(12), 69–79 (2018)

    Article  Google Scholar 

  7. Yavelov, I.S, Rochagov, A.V.: “Pulse” pulse diagnosis and computer analyzer. Moscow-Izhevsk: Research Center “Regular and chaotic dynamics” (2006)

    Google Scholar 

  8. Kurama, V., Alla, S., Rohith, V.K.: Image semantic segmentation using deep learning. Int. J. Image Graph. Sig. Process. (IJIGSP) 10(12), 1–10 (2018). https://doi.org/10.5815/ijigsp.2018.12.01

    Article  Google Scholar 

  9. Anthony, M., Wang, K., Hu, B.: Qualitative Theory of Dynamical Systems. Taylor & Francis (2001). ISBN 978-0-8247-0526-8. OCLC 45873628

    Google Scholar 

  10. Stepanyan, I.V., Yavelov, I.S., Saveliev, A.V., Do, O.K., Svirin, V.I., Pleshakov, K.V.: Phase-impulse analysis of the pulse wave and biopotentials of the human brain. Biomed. Radio Electron. 4, 81–83 (2015)

    Google Scholar 

  11. Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H.V., Peng, C.K., Schmidt, G., Yamamoto, Y., Document Reviewers, Gorenek, B., Lip, G.Y., Grassi, G., Kudaiberdieva, G., Fisher, J.P., Zabel, M., Macfadyen, R.: Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology and the ESC Working Group Europ Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. http://dx.doi.org/10.1093/europace/euv015. First published online: 15 July 2015

  12. Huikuri, H.V., Makikällio, T.H., Perkiomaki, J.: Measurement of heart rate variability by methods based on nonlinear dynamics. J. Electrocardiol. 36(Suppl), 95–99 (2003)

    Article  Google Scholar 

  13. Melillo, P., Bracale, M., Pecchia, L.: Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination Biomed. Eng. Online 10, 96 (2011). Published online 7 Nov 2011. https://doi.org/10.1186/1475-925x-10-96

    Article  Google Scholar 

  14. Wu, G.Q., Arzeno, N.M., Shen, L.L., et al.: Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure. PLoS ONE 4(2), e4323 (2009). https://doi.org/10.1371/journal.pone.0004323

    Article  Google Scholar 

  15. Krstacic, G., Krstacic, A., Smalcelj, A., Milicic, D., Jembrek-gostovic, M.: The, “Chaos Theory” and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease? Ann. Noninvasive Electrocardiol. 12(2), 130–136 (2007)

    Article  Google Scholar 

  16. Korolj, A., Wu, H.T., Radisic, M.: A healthy dose of chaos: using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 219, 119363 (2019)

    Article  Google Scholar 

  17. Nasrolahzadeh, M., Mohammadpoory, Z., Haddadnia, J.: Analysis of heart rate signals during meditation using visibility graph complexity. Cogn. Neurodyn. 13(1), 45–52 (2019)

    Article  Google Scholar 

  18. Ziabari, M.T., Sahab, A.R., Fakhari, S.N.S.: Synchronization new 3D chaotic system using brain emotional learning based intelligent controller. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 7(2), 80–87 (2015). https://doi.org/10.5815/ijitcs.2015.02.10

    Article  Google Scholar 

  19. Çetinel, G., Çerkezi, L.L.: Robust chaotic digital image watermarking scheme based on RDWT and SVD. Int. J. Image Graph. Sig. Process. (IJIGSP) 8(8), 58–67 (2016). https://doi.org/10.5815/ijigsp.2016.08.08

    Article  Google Scholar 

  20. Ziabari, M.T., Moarefianpur, A., Morvarid, M.: Fuzzy stability and synchronization of new 3D chaotic systems. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 6(5), 53–62 (2014). https://doi.org/10.5815/ijieeb.2014.05.08

    Article  Google Scholar 

  21. Tyagi, T., Dubey, H.M., Pandit, M.: Multi-objective optimal dispatch solution of solar-wind-thermal system using improved stochastic fractal search algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 8(11), 61–73 (2016). https://doi.org/10.5815/ijitcs.2016.11.08

    Article  Google Scholar 

  22. Nakamori, S.: New RLS wiener smoother for colored observation noise in linear discrete-time stochastic systems. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 6(1), 13–24 (2014). https://doi.org/10.5815/ijitcs.2014.01.02

    Article  Google Scholar 

  23. Akimov, N.N., Buhnin, A.V., Milov, V.R., Koltsov, V.A.: Kuranov AAA method of verification models based technical systems mining processes. Inf. Measur. Oper. Syst. 11, 19–25 (2015)

    Google Scholar 

  24. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  25. Goshvarpour, A., Goshvarpour, A.: Classification of electroencephalographic changes in meditation and rest: using correlation dimension and wavelet coefficients. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(3), 24–30 (2012)

    Article  Google Scholar 

  26. Mekler, A.: Calculation of EEG correlation dimension: Large massifs of experimental data. Comput. Methods Programs Biomed. 92, 154–160 (2008)

    Article  Google Scholar 

  27. Tsonis, A.A., Elsner, J.B.: The weather attractor over short timescales. Nature 333, 545–547 (1988)

    Article  Google Scholar 

  28. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992)

    Article  Google Scholar 

  29. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. CHAOS 9, 413 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely thank Igor Yavelov for devices used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Stepanyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stepanyan, I.V., Mekler, A.A. (2020). Chaotic Algorithms of Analysis of Cardiovascular Systems and Artificial Intelligence. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_21

Download citation

Publish with us

Policies and ethics