Skip to main content

Compatible Technologies to Anaerobic Digestion for the Integral Valorization of Organic Waste

  • Chapter
  • First Online:
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches

Abstract

The term “environmental biotechnology” has been coined to describe the use of biological systems, ranging from bacteria to plants, to achieve environmental remediation, pollution prevention, detection, and monitoring of contaminants, and more recently transforming waste to produce energy, biopolymers, and other benefits. Latin-American countries have a privileged location to develop ingenious and sustainable alternatives in environmental biotechnology. An advantage to do innovation in tropics is their biodiversity. Useful compounds can be produced in laboratory settings and/or full-scale operations. However, waste (solid, liquid, or gaseous) released into natural and confined (end of pipes) environments are normally mixtures of different chemical compounds and often microorganisms are part of this waste. Waste valorization can conduce to obtain more rentable by-products in bioremediation. To conduct the bioremediation join to valorization, many processes need to be implemented. Coupled biological processes can increase the efficiency and value to end products. In this chapter, different alternatives to valorize organic wastes under the anaerobic digestion-based biorefinery concept were reviewed. Advantages and challenges of developing countries to use environmental biotechnology and to solve waste problems were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapakis CM, Boyle PM, Silver PA (2012) Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 8(6):527–535

    Article  CAS  PubMed  Google Scholar 

  • Arancon RAD, Lin CSK, Chan KM, Kwan TH, Luque R (2013) Advances on waste valorization: new horizons for a more sustainable society. Energy Sci Eng 1(2):53–71

    Article  Google Scholar 

  • Baccioli A, Ferrari L, Marchionni A, Desideri U (2018) Biogas upgrading and liquefaction in an anaerobic digester plant. Energy Procedia 148:655–662

    Article  CAS  Google Scholar 

  • Beck F, Martinot E (2004) Renewable energy policies and barriers. Encycl Energy 5:365–383

    Article  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100(22):5444–5453

    Article  CAS  PubMed  Google Scholar 

  • Bezanson GS, Ells T, Prange R (2014) Effect of composting on microbial contamination and quality of fresh fruits and vegetables - a mini-review. Acta Hortic 1018:631–638

    Article  Google Scholar 

  • Budzianowski WM, Wylock CE, Marciniak PA (2017) Power requirements of biogas upgrading by water scrubbing and biomethane compression: comparative analysis of various plant configurations. Energy Convers Manag 141:2–19

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64(3):573–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coolkeeragh (2007) Welcome to the Coolkeeragh ESB Website - Transforming the electricity market. Coolkeeragh ESB, 13 October. [Online]. https://web.archive.org/web/20071013231606/http://www.coolkeeraghesb.co.uk/index.htm

  • Cutz L, Haro P, Santana D, Johnsson F (2016) Assessment of biomass energy sources and technologies: the case of Central America. Renew Sustain Energy Rev 58:1411–1431

    Article  CAS  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381

    Article  Google Scholar 

  • Dogan E, Dunaev T, Erguder TH, Demirer GN (2009) Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols. Chemosphere 74(6):797–803

    Article  CAS  PubMed  Google Scholar 

  • Escalante H (2011) Atlas del to energético de la biomasa residual en Colombia. Universidad Industrial de Santander, Bucaramanga, Colombia

    Google Scholar 

  • Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30(8):809–819

    Article  CAS  Google Scholar 

  • Garfí M, Ferrer-Martí L, Perez I, Flotats X, Ferrer I (2011) Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecol Eng 37(12):2066–2070

    Article  Google Scholar 

  • Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614

    Article  Google Scholar 

  • Garfí M, Castro L, Montero N, Escalante H, Ferrer I (2019) Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment. Bioresour Technol 274:541–548

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Sheets JP, Yang L, Li Y, Yu Z (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32(8):1460–1475

    Article  CAS  PubMed  Google Scholar 

  • Ghaz-Jahanian MA, Khoshfetrat AB, Hosseinian Rostami M, Haghighi Parapari M (2018) An innovative bioprocess for methane conversion to methanol using an efficient methane transfer chamber coupled with an airlift bioreactor. Chem Eng Res Des 134:80–89

    Article  CAS  Google Scholar 

  • Gottwald M, Gottschalk G (1985) The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol 143(1):42–46

    Article  CAS  Google Scholar 

  • Hagman L, Blumenthal A, Eklund M, Svensson N (2018) The role of biogas solutions in sustainable biorefineries. J Clean Prod 172:3982–3989

    Article  Google Scholar 

  • Hu B et al (2013) Enrichment of an anammox bacterial community from a flooded paddy soil. Environ Microbiol Rep 5(3):483–489

    Article  PubMed  Google Scholar 

  • Hüsemann MHW, Papoutsakis ET (1988) Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol Bioeng 32(7):843–852

    Article  PubMed  Google Scholar 

  • Hwang A, Nguyen A, Nguyen T, Nguyen Thanh L, Lee O, Yeol Lee E (2018) Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl Microbiol Biotechnol 102(7):3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Julio J, Barbosa AL (2013) Avances en las Tecnologías de Reformado de Metano: Estudio de Rutas Catalíticas para la Obtención de Hidrógeno y Gas de Síntesis. Cienc E Ing Al Día 8(1):16

    Google Scholar 

  • Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212

    Article  CAS  PubMed  Google Scholar 

  • Li S-Y, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresour Technol 102(5):4241–4250

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2011) Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis. J Hazard Mater 185(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Lü F, Chen M, He P-J, Shao L-M (2008) Effects of ammonia on acidogenesis of protein-rich organic wastes. Environ Eng Sci 25(1):114–122

    Article  CAS  Google Scholar 

  • MacLellan J, Chen R, Kraemer R, Zhong Y, Liu Y, Liao W (2013) Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining. Bioresour Technol 130:418–423

    Article  CAS  PubMed  Google Scholar 

  • Magrí A, Giovannini F, Connan R, Bridoux G, Béline F (2017) Nutrient management from biogas digester effluents: a bibliometric-based analysis of publications and patents. Int J Environ Sci Technol 14(8):1739–1756

    Article  CAS  Google Scholar 

  • Morini M, Pinelli M, Venturini M (2009) Analysis of biogas compression system dynamics. Appl Energy 86(11):2466–2475

    Article  CAS  Google Scholar 

  • O’Callaghan K (2016) Technologies for the utilisation of biogenic waste in the bioeconomy. Food Chem 198:2–11

    Article  PubMed  CAS  Google Scholar 

  • Pasini G, Baccioli A, Ferrari L, Antonelli M, Frigo S, Desideri U (2019) Biomethane grid injection or biomethane liquefaction: a technical-economic analysis. Biomass Bioenergy 127:105264

    Article  CAS  Google Scholar 

  • Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606

    Article  PubMed  CAS  Google Scholar 

  • Sambusiti C, Monlau F, Barakat A (2016) Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach. Bioresour Technol 212:289–295

    Article  CAS  PubMed  Google Scholar 

  • Sanabria J (2014) Environmental biotechnology research: challenges and opportunities in Latin America. J Agric Environ Ethics 27(4):681–694

    Article  Google Scholar 

  • Sanabria J, Dierolf C, Mora LE (2005) Nuevas tecnologías para la desinfección de aguas y microorganismos emergentes. Presented at the Seminario Internacional: Visión Integral en el Mejoramiento de la Calidad del Agua, Universidad del Valle, Instituto Cinara

    Google Scholar 

  • Sawatdeenarunat C et al (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol 215:304–313

    Article  CAS  PubMed  Google Scholar 

  • Serafim LS, Lemos PC, Oliveira R, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87(2):145–160

    Article  CAS  PubMed  Google Scholar 

  • Serfass, P (2017) Avoiding the legal ‘third rail’ of energy generation. Presented at the NACWA Law Seminar, Savannah, GA, November 15

    Google Scholar 

  • Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour Technol 97(17):2211–2216

    Article  CAS  PubMed  Google Scholar 

  • Silva-Martínez R, Sanches-Pereira A (2018) Organic waste to energy in Latin America and the Caribbean (LAC): state-of-the-art literature review. European Biomass Conference and Exhibition, Copenhagen

    Google Scholar 

  • Surendra KC, Sawatdeenarunat C, Shrestha S, Sung S, Khanal S (2015) Anaerobic digestion-based biorefinery for bioenergy and biobased products. Ind Biotechnol 11:103–112

    Article  Google Scholar 

  • Tao W, Fattah KP, Huchzermeier MP (2016) Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances. J Environ Manage 169:46–57

    Article  CAS  PubMed  Google Scholar 

  • UPME (2015) Integración de las energías renovables no convencionales en Colombia. Ministerio de Minas y Energía, Bogotá (Colombia)

    Google Scholar 

  • Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Voegele E (2018) Organic power to install 2 MW AD plant in Puerto Rico. Biomass Magazine, 09 February. [Online]. Available http://biomassmagazine.com/articles/15045/organic-power-to-install-2-mw-ad-plant-in-puerto-rico

  • Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35(5):1613–1622

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from Universidad del Valle and Universidad Nacional de Colombia-Sede Palmira to perform this work. Additionally, the authors acknowledge support from the Administrative Department of Science and Technology of Colombia (COLCIENCIAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Clavijo-Salinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clavijo-Salinas, J.C., Fuertez, J., Cadavid-Rodríguez, L.S., Sanabria, J. (2020). Compatible Technologies to Anaerobic Digestion for the Integral Valorization of Organic Waste. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_9

Download citation

Publish with us

Policies and ethics