Skip to main content

Proteomics of Lignocellulosic Substrates Bioconversion in Anaerobic Digesters to Increase Carbon Recovery as Methane

  • Chapter
  • First Online:
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches

Abstract

Anaerobic digestion (AD) is a cost-effective treatment for management of lignocellulosic substrates, viz., agricultural wastes and animal manures, which also aids in generation of methane as biofuel. Although the application of AD technology is increasing, one of the major limitations of the process is that the rate of fermentation is higher than the rate of methanogenesis, which significantly affects process stability and methane yield. Normally, the souring of digesters can be observed after 2–4 weeks after the initiation of the volatile fatty acids accumulation, which makes it difficult for early detection and consequently resulting in acidification of digesters. Of late, metagenomic approaches are gaining importance due to their ability to reveal the microbial diversity and their dynamics in a relatively short time. However, their functional nature could not be clearly explained due to the lack of data on their activity. Recent advances in proteomic studies show its potential as a complementary technology to metagenomic studies for efficient management of digesters. Metaproteomic analyses aid in identifying a shift in metabolic paths and in metabolic networks under stress conditions. This provides insights on functionality, microbial interactions, and provides data on spatiotemporal variations and their dynamics of proteins crucial for efficient performance of the digester. Besides, this technique has led to identify novel phylotypes with novel functions among the microbial communities of the anaerobic digesters, which suggest the potential of proteomics in bioprospection of novel enzymes for industrial purposes. How proteomics along with metagenomics and transcriptomics data could aid in early detection of disturbances in the digesters helps in formulating recovery strategies as well as to increase the methane content of biogas will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagamani Balagurusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talavera-Caro, A.G. et al. (2020). Proteomics of Lignocellulosic Substrates Bioconversion in Anaerobic Digesters to Increase Carbon Recovery as Methane. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_4

Download citation

Publish with us

Policies and ethics