Skip to main content

Microbial Identification and Extracellular Polymeric Substances Characterization of Aerobic Granules Developed in Treating Rubber Processing Wastewater

  • Chapter
  • First Online:
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches

Abstract

The goal of this study was to investigate the species of the abundance microbial in seed sludge and aerobic granular sludge. Experiments were carried out in a sequencing batch reactor with a working volume of 1.6 L. During the start-up period, the reactor was inoculated with 800 mL of sludge from a municipal sewage treatment plant plus 800 mL of rubber processing wastewater. Further investigation by Illumina high-throughput sequencing was performed to analyze the microbial diversity and phylogenetic structures during the granulation of seed sludge to aerobic granules. A diversity of microorganisms was identified from the seed sludge and aerobic granular sludge. Seed sludge consisted of 96.4% bacteria, 1.7% eukaryote, 1.2% archaea, and 0.7% viruses. Aerobic granular sludge consisted of 97.8% bacteria, 1.0% eukaryote, 0.8% archaea, and 0.4% viruses. As the granulation process succeeded in SBR, distinct differences of the microbial community in the seed sludge and aerobic granular sludge were observed, which suggested that there was high microbial selection pressure during granulation in the system. The most abundance species in seed sludge was Dechloromonas aromatica, while Pseudomonas fluorescens was the most abundance species in aerobic granular sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav SS, Lee DJ (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J Hazard Mater 154(1–3):1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Lee DJ, Tay JH (2008) Extracellular polymeric substances and structural stability of aerobic granule. Water Res 42(6–7):1644–1650

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2009) Functional consortium from aerobic granules under high organic loading rates. Bioresour Technol 100:3465–3470

    Article  CAS  PubMed  Google Scholar 

  • Allen MS, Welch KT, Prebyl BS, Baker DC, Meyers AJ, Sayler GS (2004) Analysis and glycosyl composition of the exopolysaccharide isolated from the floc-forming wastewater bacterium Thauera sp. MZ1T. Environ Microbiol 6:780–790

    Article  CAS  PubMed  Google Scholar 

  • Aqeel H, Basuvaraj M, Hall M, Neufeld JD, Liss SN (2016) Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage. Environ Biotechnol 100:447–460

    Article  CAS  Google Scholar 

  • Arraj A, Bohatier J, Laveran H, Traore O (2005) Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants. J Appl Microbiol 98(2):516–524

    Article  CAS  PubMed  Google Scholar 

  • Bassin JP, Kleerebezem R, Dezotti M, Van Loosdrecht MCM (2012) Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge. Chemosphere 89(10):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Beun JJ, Hendriks A, van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33(10):2283–2290

    Article  CAS  Google Scholar 

  • Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5(11):1701–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond PL, Keller J, Blackall LL (1998) Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Water Sci Technol 37(4):567–571

    Article  CAS  Google Scholar 

  • Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65:4077–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol 45:1–6

    Article  CAS  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19(6):544–549

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhou S, Li T (2010) Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ Technol 31(14):1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51(4):325–346

    Article  CAS  Google Scholar 

  • Dahalan FA (2012) Development and characterization of phototrophic aerobic granular sludge. Ph.D. Thesis. Universiti Teknologi Malaysia

    Google Scholar 

  • De Sanctis M, Di Iaconi C, Lopez A, Rossetti S (2010) Granular biomass structure and population dynamics in sequencing batch biofilter granular reactor (SBBGR). Bioresour Technol 101:2152–2158

    Article  PubMed  CAS  Google Scholar 

  • Desloover J, De Clippeleir H, Boeckx P, Du Laing G, Colsen J, Verstraete W (2011) Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Res 45:2811–2821

    Article  CAS  PubMed  Google Scholar 

  • Di Iaconi C, Ramadori R, Lopez A (2006) Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem Eng J 31(2):118–124

    Article  CAS  Google Scholar 

  • Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44(12):3635–3644

    Article  PubMed  CAS  Google Scholar 

  • Dignac M-F, Urbain V, Rybacki D, Bruchet A, Shidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci Technol 38:45–53

    Article  CAS  Google Scholar 

  • Dogsa I, Kriechbaum M, Stopar D, Laggnerz P (2005) Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophys J 83:2711–2720

    Article  CAS  Google Scholar 

  • Dugan P, Stoner D, Pickrum H (2006) The genus Zoogloea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 960–970

    Chapter  Google Scholar 

  • Dulekgurgen E, Artan N, Orhon D, Wilderer PA (2008) How does shear affect aggregation in granular sludge sequencing batch reactors? Relations between shear, hydrophobicity, and extracellular polymeric substances. Water Sci Technol 58:267–276

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC, New York

    Book  Google Scholar 

  • Erşan YÇ, Erguder TH (2014) The effect of seed sludge type on aerobic granulation via anoxic-aerobic operation. Environ Technol 35(23):2928–2939

    Article  PubMed  CAS  Google Scholar 

  • Etterer TJ (2006) Formation, structure and function of aerobic granular sludge. Ph.D. Thesis. Technische Universität München, Munich

    Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilén BM (2012) Diversity and dynamics of archaea in an activated sludge wastewater treatment plant. BMC Microbiol 12:140–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao DW, Hu Q, Yao C, Ren NQ (2014) Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresour Technol 159:193–198

    Article  CAS  PubMed  Google Scholar 

  • Gerardi MH (2006) Wastewater bacteria, 5th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Guo F, Zhang SH, Yu X, Wei B (2011) Variations of both bacterial community and extracellular polymers: the inducements of increase of cell hydrophobicity from biofloc to aerobic granule sludge. Bioresour Technol 102(11):6421–6428

    Article  CAS  PubMed  Google Scholar 

  • Hesselsoe M, Fureder S, Schloter M, Bodrossy L, Iversen N, Roslev P, Nielsen PH, Wagner M, Loy A (2009) Isotope array analysis of rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME J 3:1349–1364

    Article  CAS  PubMed  Google Scholar 

  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72:2637–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Mingchao MA, Jun LI, Anhuai LU, Zhong Z (2008) Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci Front 15(6):163–168

    Article  CAS  Google Scholar 

  • Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91:1045–1058

    Article  CAS  Google Scholar 

  • Kim IS, Kim S-M, Jang A (2008) Characterization of aerobic granules by microbial density at different COD loading rates. Bioresour Technol 99:18–25

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Sajjad M, Lee J, Park J, Jun T (2014) Variation of extracellular polymeric substances (EPS) and specific resistance to filtration in sludge granulation process to the change of influent organic loading rate. Desalin Water Treat 52(22–24):4376–4387

    Article  CAS  Google Scholar 

  • Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology 153:4061–4073

    Article  CAS  PubMed  Google Scholar 

  • Kragelund C, Kong Y, Van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152(10):3003–3012

    Article  PubMed  Google Scholar 

  • Kundu K, Bergmann I, Klocke M, Sharma S, Sreekrishnan TR (2014) Influence of hydrodynamic shear on performance and microbial community structure of a hybrid anaerobic reactor. J Chem Technol Biotechnol 89(3):462–470

    Article  CAS  Google Scholar 

  • Langone M, Yan J, Haaijer SCM, Op den Camp HJM, Jetten MSM, Andreottola G (2014) Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor. Front Microbiol 5:28–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL (2002) Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Res 36(4):1056–1066

    Article  CAS  Google Scholar 

  • Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28(6):919–934

    Article  CAS  PubMed  Google Scholar 

  • Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Snaidr J, van der Waarde J, Tandoi V (2004) Filamentous alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27(6):716–727

    Article  CAS  PubMed  Google Scholar 

  • Li AJ, Li XY (2009) Selective sludge discharge as determining factor in SBR aerobic granulation: numerical modeling and experimental verification. Water Res 43:3387–3396

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41(5):1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Li AJ, Yang S, Li X, Gu J (2008) Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res 42:3552–3560

    Article  CAS  PubMed  Google Scholar 

  • Li AJ, Zhang T, Li XY (2010) Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere 78:500–509

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Environ Sci Technol 33(3):237–273

    Article  CAS  Google Scholar 

  • Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36(24):1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Liu Y, Tay JH (2004a) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65:143–148

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang SF, Tay JH (2004b) Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J Biotechnol 108:161–169

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Kong YH, Zhang R, Zhang X, Wong FS, Tay JH, Zhu JR, Jiang WJ, Liu WT (2010) Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods. Water Sci Technol 62:1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Chen ZL, Yu WZ, You SJ (2011) Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Res 45(5):2111–2121

    Article  CAS  PubMed  Google Scholar 

  • Martins AM, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge – a critical review. Water Res 38(4):793–817

    Article  CAS  PubMed  Google Scholar 

  • McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71(2):1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • More TT, Yan S, Tyagi RD, Surampalli RY (2010) Potential use of filamentous fungi for wastewater sludge treatment. Bioresour Technol 101(20):7691–7700

    Article  CAS  PubMed  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications – review. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  • Nichols CAM, Garon S, Bowman JP, Raguenes G, Guezennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    Article  CAS  Google Scholar 

  • Nicolau A, Dias N, Mota M, Lima N (2001) Trends in the use of protozoa in the assessment of wastewater treatment. Res Microbiol 152(7):621–630

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44(17):5070–5088

    Article  CAS  PubMed  Google Scholar 

  • Oehmen A, Carvalho G, Lopez-Vazquez CM, van Loosdrecht MCM, Reis MAM (2010) Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. Water Res 44:4992–5004

    Article  CAS  PubMed  Google Scholar 

  • Oshiki M, Onuki M, Satoh H, Mino T (2008) PHA-accumulating microorganisms in full-scale wastewater treatment plants. Water Sci Technol 58:13–20

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Tay JH, He YX, Tay STL (2004) The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett Appl Microbiol 38:158–163

    Article  CAS  PubMed  Google Scholar 

  • Podedworna J, Żubrowska-Sudoł M (2012) Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase. Environ Technol 33(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Liu QS, Yang SF, Tay JH, Liu Y (2004) Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process. Civil Eng Res 17:49–51

    Google Scholar 

  • Raszka A, Chorvatova M, Wanner J (2006) The role and significance of extracellular polymers in activated sludge. Part I: literature review. Acta Hydrochim Hydrobiol 34(5):411–426

    Article  CAS  Google Scholar 

  • Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, Lapidus A (2009) Metabolic analysis of the soil microbe dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 10:351–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3):229–246

    Article  CAS  PubMed  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27(1):99–127

    Article  CAS  PubMed  Google Scholar 

  • Shah HN, Gharbia S (2010) Mass spectrometry for microbial proteomics, vol 341. Wiley, Chichester

    Book  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894

    Article  CAS  PubMed  Google Scholar 

  • Sich H, Van Rijn J (1997) Scanning electron microscopy of biofilm formation in denitrifying, fluidised bed reactors. Water Res 31:733–742

    Article  CAS  Google Scholar 

  • Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresour Technol 101:S23–S28

    Article  CAS  PubMed  Google Scholar 

  • Su JJ, Yeh KS, Tseng PW (2006) A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan. Curr Microbiol 53(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Guo X, Wang D, Chu H (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178

    Article  Google Scholar 

  • Tay STL, Ivanov V, Yi S, Zhuang WQ, Tay JH (2002) Presence of anaerobic bacteroides in aerobically grown microbial granules. Microb Ecol 44:278–285

    Article  CAS  PubMed  Google Scholar 

  • Thomsen TR, Kong Y, Nielsen PH (2007) Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiol Ecol 60:370–382

    Article  CAS  PubMed  Google Scholar 

  • Van Der Waarde J, Krooneman J, Geurkink B, Van Der Werf A, Eikelboom D, Beimfohr C, Snaidr J, Levantesi C, Tandoi V (2002) Molecular monitoring of bulking sludge in industrial wastewater treatment plants. Water Science and Technology 46(1–2):551–558

    Article  CAS  PubMed  Google Scholar 

  • Van Dierdonck J, Van den Broeck R, Vervoort E, D’haeninck P, Springael D, Van Impe J, Smets I (2012) Does a change in reactor loading rate affect activated sludge bioflocculation? Process Biochem 47:2227–2233

    Article  CAS  Google Scholar 

  • Veiga MC, Jain MK, Wu W, Hollingsworth RI, Zeikus JG (1997) Composition and role of extracellular polymers in methanogenic granules. Appl Environ Microbiol 63(2):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, He S, Wang L, Shuo L (2005) Simultaneous nitrification and denitrification in MBR. Water Sci Technol 52(10–11):435–442

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang Z, Wu W (2009) Research advances in aerobic granular sludge. Acta Sci Circumst 29:449–473

    Google Scholar 

  • Wang R, Peng Y, Cheng Z, Ren N (2014) Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system. Bioresour Technol 169:307–312

    Article  CAS  PubMed  Google Scholar 

  • Weber SD, Ludwig W, Schleifer KH, Fried J (2007) Microbial composition and structure of aerobic granular sewage biofilms. Appl Environ Microbiol 73(19):6233–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei YJ, Ji M, Li RY, Qin FF (2012) Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manag 32:448–455

    Article  CAS  PubMed  Google Scholar 

  • Weissbrodt DG, Shani N, Holliger C (2014) Linking bacterial population dynamics and nutrient removal in the granular sludge biofilm ecosystem engineered for wastewater treatment. FEMS Microbiol Ecol 88:579–595

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilen BM, Gapes D, Keller J (2004) Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnol Bioeng 86(4):445–457

    Article  CAS  PubMed  Google Scholar 

  • Williams JC, De los Reyes FL (2006) Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci Technol 54(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer, Berlin, pp 1–19

    Book  Google Scholar 

  • Winkler MK, Kleerebezem R, de Bruin LM, Verheijen PJ, Abbas B, Habermacher J, van Loosdrecht MCM (2013) Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl Microbiol Biotechnol 97:7447–7458

    Article  CAS  PubMed  Google Scholar 

  • Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Subramanian B, Surampalli RY, Narasiah S, Tyagi RD (2007) Isolation, characterization, and identification of bacteria from activated sludge and soluble microbial products in wastewater treatment systems. Pract Period Hazard Toxic Radioact Waste Manage 11(4):240–258

    Article  CAS  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):1–13

    Article  Google Scholar 

  • Yu T, Lei Z, Sun DZ (2006) Functions and behaviours of activated sludge extracellular polymeric substances (EPS): a promising environmental interest. J Environ Sci 18(3):420–427

    Google Scholar 

  • Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzym Microb Technol 41(5):551–557

    Article  CAS  Google Scholar 

  • Zhang B, Ji M, Qiu ZG, Liu HN, Wang JF, Li JW (2011) Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system. Bioresour Technol 102:2474–2480

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Huang J, Zhao H, Yang H (2013) Microbial community and N removal of aerobic granular sludge at high COD and N loading rates. Bioresour Technol 143:439–446

    Article  CAS  PubMed  Google Scholar 

  • Zheng YM, Yu HQ, Liu SJ, Liu XZ (2006) Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63:1791–1800

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Qi HY, Lv ML, Kong Y, Yu YW, Xu XY (2012) Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresour Technol 124:455–459

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhou JH, Lv ML, Yu HT, Zhao H, Xu XY (2015) Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE. Chemosphere 121:26–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aznah Nor Anuar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anuar, A.N. et al. (2020). Microbial Identification and Extracellular Polymeric Substances Characterization of Aerobic Granules Developed in Treating Rubber Processing Wastewater. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_13

Download citation

Publish with us

Policies and ethics