Skip to main content

Mathematical Modeling and Stability Analysis of HIV with Contact Tracing According to the Changes in the Infected Classes

  • Conference paper
  • First Online:
4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019) (CMES 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1111))

  • 287 Accesses

Abstract

In this paper, we investigate the effect of contact tracing the spread of HIV in a population. The mathematical model is given as a system of differential equations with piecewise constant arguments, where we divide the population into three sub-classes: HIV negative, HIV positive that do not know they are infected and the class with HIV positive that know they are infected. This system is analyzed using the theory of differential and difference equations. The local stability of the positive equilibrium point is investigated by using the Schur-Cohn Criteria, while for the global stability we consider an appropriate Lyapunov function. The system under consideration has shown that it has semi-cycle behaviors, but not a structure of period two. Moreover, we analyze the case for low infection rate by using the Allee effect at time t. Several examples are presented to support our theoretical findings using data from a case study in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341, 1084–1101 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arazoza, H.D., Lounes, R.: A non-linear model for a sexually transmitted disease with contact tracing. IMA J. Math. Appl. Med. 19, 221–234 (2002)

    Article  Google Scholar 

  3. Busenberg, K., Cooke, K., Ying-Hen, H.: A model for HIV in Asia. Math. Biosci. 128, 185–210 (1995)

    Article  Google Scholar 

  4. Doyle, M., Greenhalgh, D.: Asymmetry and multiple endemic equilibria in a model for HIV transmission in a heterosexual population. Math. Comput. Model. 29, 43–61 (1999)

    Article  Google Scholar 

  5. Hsieh, Y.H., Sheu, S.P.: The effect of density-dependent treatment and behavior change on the dynamics of HIV transmission. J. Math. Biol. 43, 69–80 (2001)

    Article  MathSciNet  Google Scholar 

  6. Ma, Z., Liu, J., Li, J.: Stability analysis for differential infectivity epidemic models. Nonlinear Anal.: Real World Appl. 4, 841–856 (2003)

    Article  MathSciNet  Google Scholar 

  7. Naresh, R., Tripathi, A., Sharma, D.: A nonlinear HIV/AIDS model with contact tracing. Appl. Math. Comput. 217, 9575–9591 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Tripathi, A., Naresh, R., Sharma, D.: Modelling the effect of screening of unaware infectives on the spread of HIV infection. Appl. Math. Comput. 184, 1053–1068 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Cooke, K.L., Györi, I.: Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments. Comput. Math Appl. 28, 81–92 (1994)

    Article  MathSciNet  Google Scholar 

  10. Akhmet, M.: Nonlinear Hybrid Continuous-Discrete Time Models. Atlantis Press, Paris (2011)

    Book  Google Scholar 

  11. Bozkurt, F.: Modeling a tumor growth with piecewise constant arguments. Discrete Dyn. Nat. Soc. 2013, 1–8 (2013). Article ID 841764

    Article  MathSciNet  Google Scholar 

  12. Bozkurt, F., Hajji, M.A.: Stability and density analysis of glioblastoma (GB) with piecewise constant arguments. Wulfenia J. 23(2), 305–320 (2016)

    Google Scholar 

  13. Bozkurt, F., Peker, F.: Mathematical modelling of HIV epidemic and stability analysis. Adv. Differ. Eqn. 95, 1–17 (2014)

    MATH  Google Scholar 

  14. Gopalsamy, K., Liu, P.: Persistence and global stability in a population model. J. Math. Anal. Appl. 224, 59–80 (1998)

    Article  MathSciNet  Google Scholar 

  15. Veeresha, P., Parakasha, D.G., Baskonus, H.M.: New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives. Chaos 29, 013119 (2019)

    Article  MathSciNet  Google Scholar 

  16. Veeresha, P., Parakasha, D.G., Baskonus, H.M.: Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 13(2), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models using algebraic methods. Math. Comput. Sci. 5, 247–262 (2011)

    Article  MathSciNet  Google Scholar 

  18. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  19. Asmussen, M.A.: Density-Dependent Selection II. The Allee effect. Am. Nat. 114, 796–809 (1979)

    Article  Google Scholar 

  20. Courchamp, F., Berec, L.: Gascoigne: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  21. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is Allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  22. Lande, R.: Extinction threshold in demographic models of territorial populations. Am. Nat. 130(4), 624–635 (1987)

    Article  Google Scholar 

  23. Allen, L.J.S.: An Introduction to Mathematical Biology. Prentice Hall, Pearson (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Yousef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yousef, A., Yousef, F.B. (2020). Mathematical Modeling and Stability Analysis of HIV with Contact Tracing According to the Changes in the Infected Classes. In: Dutta, H., Hammouch, Z., Bulut, H., Baskonus, H. (eds) 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019). CMES 2019. Advances in Intelligent Systems and Computing, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-030-39112-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39112-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39111-9

  • Online ISBN: 978-3-030-39112-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics